Cyclodextrin nanosponges are solid nanoparticles, designed by cross-linking of cyclodextrin polymer; it has been used widely as a good delivery system for water insoluble drugs. The aim of this study is to enhance the solubility of Piroxicam (PXM) using β-Cyclodextrin based nanosponges formulations. PXM nanosponge (PXM-NS) formulations were prepared using β-cyclodextrin and carbonyldiimidazole as a cross linker, three ratios of β-cyclodextrin to crosslinker in addition to three drug to nanosponges ratios were tested. Piroxicam nanosponge formulations were characterized for its particle size, zeta potential, physical compatibility and in vitro release. Stability studies at three temperatures (4 °C, 25 °C and 40 °C) were done for optimal formula. Finally, the in vivo analgesic activity and pharmacokinetic parameters of the optimal formula were conducted. The optimized PXM-NS formula (PXM-NS10) showed particle size (362 ± 14.06 nm), polydispersity index (0.0518), zeta potential (17 ± 1.05 mV), and %EE (79.13 ± 4.33). The dissolution study showed a significant increase in the amount of PXM dissolved compared with the unformulated drug. Stability studies confirmed that nanosponge showed accepted stability for 90 days at 4 °C and 25 °C. In vivo analgesic studies verified that there was a significant enhancement in the analgesic response to PXM in mice, and 1.42 fold enhancement in the relative bioavailability of PXM-NS10 as compared to commercial tablets. Nanosponge prepared under optimal conditions is an encouraging formula for increasing the solubility and therefore the bioavailability of Piroxicam.
Development of new approaches for oral delivery of an existing antiviral drug aimed to enhance its permeability and hence bioavailability. Ganciclovir (GC) is an antiviral drug that belongs to class III in biopharmaceutical classification. The encapsulation of poorly absorbed drugs within nanosized particles offers several characteristics to drug due to their acquired surface properties. In the following study, the solvent evaporation technique was used to incorporate GC, within elegant nanosize particles using cyclodextrin and shellac polymers for enhancing its permeability and release pattern. Formulation variables were optimized using 2 3 full factorial design. The prepared formulations were assessed for yield, particle size, content, and micromeritics behavior. The optimized formula (F6) was identified through differential scanning calorimetry and Fourier transform infrared. In vitro release and stability were also assessed. Pharmacokinetic parameters of optimized nano GC solid dispersion particles (NGCSD-F6) were finally evaluated. The optimized formula (F6) showed a mean particle size of 288.5 ± 20.7 nm, a zeta potential of about 23.87 ± 2.27, and drug content 95.77 ± 2.1%. The in vitro drug release pattern of F6 showed an initial burst release followed by a sustained release over the next 12 h. The optimized formula showed accepted stability upon storage at room and refrigerator temperatures for 6 months with good flowing properties (Carr’s index = 18.28 ± 0.44). In vivo pharmacokinetic study in rabbits revealed 2.2 fold increases in the bioavailability of GC compared with commercial convention tablets. The study affords evidence for the success of the solid dispersion technique under specified conditions in improvement of bioavailability of GC.
Objective: The therapeutic equivalence of generic brands is a great challenge for manufacturers. This study aimed to evaluate the bioequivalence of four different generic brands of atenolol tablets under biowaiver conditions. Methods: Physiochemical properties of the tablet products namely uniformity of weight, hardness, disintegration, and drug content were assessed. The dissolution profiles of atenolol tablets were conducted in pH 1.2, 4.5, 6.8 and 7.6 buffers using USP dissolution apparatus II. Similarity and difference factors were calculated. Finally, four kinetic models have been offered to describe the release characteristics of atenolol under experiment conditions. Results: All tablets showed accepted physiochemical characters. Dissolution profiles revealed that G2 showed the highest similarity to innovator (f2 91.86) in pH 7.6. Dissolution kinetics of G2 at the same pH could be best described as Higuchi model of release. Conclusion: The study showed that excipients and manufacturing practices play an important role in marketing biowaiver generic products meet the international regulatory bodies criteria.
The aim of this work was to formulate glimepiride (class II drug) which is characterized by low solubility and high permeability as nanostructured particles using a cryogenic technique with an aid of water-soluble polymer to improve its aqueous solubility and hence its bioavailability. 27 formula of glimepiride nano size particles were prepared by a spray freezing into cryogenic liquid (SCFL) using poly vinyl pyrrolidone K-30 (PVP K-30); that three drug polymer ratio (1:1, 1:2, and 1:3), with three different volumes of feeding solution (50, 100, 150 mL), at three flow rates (10, 20, and 30 mL/min). The prepared formulations were evaluated for production yield, particle size, zeta potential, drug content, release rate, in vivo hypoglycemic activity, and bioavailability. All prepared formulations showed high production yield and drug content ranged between 91.1 ± 3.4% and 94.3 ± 1.8% and 95.1 ± 2.8% and 97.1 ± 2.5%, respectively. The mean particles size was ranged between 280 ± 62 nm and 520 ± 30 nm. The results of in vitro release study revealed significant enhancement in the solubility of prepared formulations compared with the pure drug. It was found that optimal formula showed a significant reduction in blood glucose levels in diabetic rats, and 1.79-fold enhancements in oral bioavailability compared with market tablets. Nanoparticle prepared by SCFL method is an encouraging formula for improving the solubility and the bioavailability of glimepiride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.