Natrialba sp. strain C21 was isolated from oil contaminated saline water in Ain Salah (Algeria) and has exhibited a good potential for degrading phenol (3% v/v), naphthalene (3% v/v), and pyrene (3% v/v) at high salinity with high growth, enzymatic activity and biosurfactant production. Successful metabolism of aromatic hydrocarbon compounds of the strain Natrialba sp. C21 appears to require the ortho-cleavage pathway. Indeed, assays of the key enzymes involved in the ring cleavage of catechol 1, 2-dioxygenase indicated that degradation of the phenol, naphthalene and pyrene by strain Natrialba sp. C21 was via the ortho-cleavage pathway. Cells grown on aromatic hydrocarbons displayed greater ortho-activities mainly towards catechol, while the meta-activity was very low. Besides, biosurfactants derived from the strain C21 were capable of effectively emulsifying both aromatic and aliphatic hydrocarbons and seem to be particularly promising since they have particular adaptations like the increased stability at high temperature and salinity conditions. This study clearly demonstrates for the first time that strain belonging to the genera Natrialba is able to grow at 25% (w/v) NaCl, utilizing phenol, naphthalene, and pyrene as the sole carbon sources. The results suggest that the isolated halophilic archaeon could be a good candidate for the remediation process in extreme environments polluted by aromatic hydrocarbons. Moreover, the produced biosurfactant offers a multitude of interesting potential applications in various fields of biotechnology.
At the limits of life, hyper-saline aquatic ecosystems; Chott and Sebkha are a model of choice of extreme environments, housing a halophilic microflora that had to adapt to these conditions. In Algeria, these ecosystems are poorly studied. However, our study was carried out on the waters of Chott Tinsilt and Sebkha El Malah. The study of this microflora revealed the presence of a significant morphological, physiological and metabolic diversity. The molecular study allowed us to access to a phylogenetic affiliation including an Archean Species (ATS1) and 7 bacterial species (A1, A2, A3, A4, B1, B4, B5). The results showed that these isolates were related to the genera Haloferax (for the strain ATS1) and Halomonas (strains A1, A2 and A4), Staphylococcus (strain A3), Salinivibrio (strain B1), Planococcus (strain B4) and Halobacillus (strain B5). Most isolates produced hydrolases at high salt concentrations. The Production yields obtained are very promising for applications in the biotechnology and industrial microbiology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.