Melarsoprol, a water-insoluble drug, is mainly used in the treatment of trypanosomiasis and has demonstrated an in vitro activity on myeloid and lymphoid leukemia derived cell lines. It is marketed as a very poorly tolerated non-aqueous solution (Arsobal). The aim of our work was to develop melarsoprol-cyclodextrin complexes in order to improve the tolerability and the bioavailability of melarsoprol. Phase-solubility analysis showed A(L)-type diagrams with beta-cyclodextrin (betaCD), randomly methylated beta-cyclodextrin (RAMEbetaCD) and hydroxypropyl-beta-cyclodextrin (HPbetaCD), which suggested the formation of 1:1 inclusion complexes. The solubility enhancement factor of melarsoprol (solubility in 250 mM of cyclodextrin/solubility in water) was about 7.2x10(3) with both beta-cyclodextrin derivatives. The 1:1 stoichiometry was confirmed in the aqueous solutions by the UV spectrophotometer using Job's plot method. The apparent stability constants K(1:1), calculated from mole-ratio titration plots, were 57 143+/-4 425M(-1) for RAMEbetaCD and 50 761+/-5 070 M(-1) for HPbetaCD. Data from 1H-NMR and ROESY experiments provided a clear evidence of inclusion complexation of melarsoprol with its dithiaarsane extremity inserted into the wide rim of the cyclodextrin torus. Moreover, RAMEbetaCD had a pronounced effect on the drug hydrolysis and the dissolution rate of melarsoprol. However, the cytotoxic properties of melarsoprol on K562 and U937 human leukemia cell lines was not modified by complexation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.