h i g h l i g h t s• We model the customer redial and reconnect behaviors in call centers.• We approximate the service levels and abandonment percentages of such a model. • A fluid model is proposed, and the corresponding fluid limit is derived. • The performance of our approximation is evaluated numerically. a b s t r a c tIn many call centers, callers may call multiple times. Some of the calls are re-attempts after abandonments (redials), and some are re-attempts after connected calls (reconnects). The combination of redials and reconnects has not been considered when making staffing decisions, while not distinguishing them from the total calls will inevitably lead to underor overestimation of call volumes, which results in improper and hence costly staffing decisions.Motivated by this, in this paper we study call centers where customers can abandon, and abandoned customers may redial, and when a customer finishes his conversation with an agent, he may reconnect. We use a fluid model to derive first order approximations for the number of customers in the redial and reconnect orbits in the heavy traffic. We show that the fluid limit of such a model is the unique solution to a system of three differential equations. Furthermore, we use the fluid limit to calculate the expected total arrival rate, which is then given as an input to the Erlang A formula for the purpose of calculating the service levels and abandonment probabilities. The performance of such a procedure is validated numerically in the case of both single intervals with constant parameters and multiple intervals with time-dependent parameters. The results demonstrate that this approximation method leads to accurate estimations for the service levels and the abandonment probabilities.
a b s t r a c tIn practice, in many call centers customers often perform redials (i.e., reattempt after an abandonment) and reconnects (i.e., reattempt after an answered call). In the literature, call center models usually do not cover these features, while real data analysis and simulation results show ignoring them inevitably leads to inaccurate estimation of the total inbound volume. Therefore, in this paper we propose a performance model that includes both features. In our model, the total volume consists of three types of calls: (1) fresh calls (i.e., initial call attempts), (2) redials, and (3) reconnects. In practice, the total volume is used to make forecasts, while according to the simulation results, this could lead to high forecast errors, and subsequently wrong staffing decisions. However, most of the call center data sets do not have customer-identity information, which makes it difficult to identify how many calls are fresh and what fractions of the calls are redials and reconnects.Motivated by this, we propose a model to estimate the number of fresh calls, and the redial and reconnect probabilities, using real call center data that has no customer-identity information. We show that these three variables cannot be estimated simultaneously. However, it is empirically shown that if one variable is given, the other two variables can be estimated accurately with relatively small bias. We show that our estimations of redial and reconnect probabilities and the number of fresh calls are close to the real ones, both via real data analysis and simulation.
We study a call center model with a postponed callback option. A customer at the head of the queue whose elapsed waiting time achieves a given threshold receives a voice message mentioning the option to be called back later. This callback option differs from the traditional ones found in the literature where the callback offer is given at customer's arrival. We approximate this system by a two-dimensional Markov chain, with one dimension being a unit of a discretization of the waiting time. We next show that this approximation model converges to the exact one. This allows us to obtain explicitly the performance measures without abandonment and to compute them numerically otherwise. From the performance analysis, we derive a series of practical insights and recommendations for a clever use of the callback offer. In particular, we show that this time-based offer outperforms traditional ones when considering the waiting time of inbound calls.
In this paper, we consider a two-stage call center staffing model. In the first stage, the interval staffing levels are set under arrival rate uncertainty. In the second stage, these initial staffing levels are corrected to the right value based on more precise arrival rate information. We show that this problem is of newsvendor type, where the costs are the initial staffing costs plus the second stage adaptation costs. We show that we should initially staff according to a quantile of the distributional forecast, rather than the mean. It is also shown that the errors in staffing are approximately linear in the forecasting errors. This leads to the conclusion that the weighted sum of errors should be the error measurement in call center forecasting, since minimizing, it minimizes the total staffing costs. In special cases where the costs are symmetric for over- and understaffing, this is equivalent to minimizing the weighted absolute percentage error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.