Ulcerative colitis (UC) is a chronic, nonspecific inflammation of the bowel that mainly affects the mucosa and submucosa of the rectum and colon. Ginsenosides are the main active ingredients in ginseng and show many therapeutic effects in anti-inflammatory diseases, cancer, and nervous system regulation. Protopanaxatriol saponin (PTS) is an important part of saponins, and there is no research on its pharmacological effects on colitis. In this study, a model of ulcerative colitis in mice was induced by having mice freely drink 3.5% dextran sodium sulfate (DSS) solution, and UPLC-Q-TOF-MS-based metabolomics methods were applied to explore the therapeutic effect and protective mechanism of PTS for treating UC. The results showed that PTS could significantly prevent colon shortening and pathological damage and alleviate abnormal changes in UC mouse physiological and biochemical parameters. Moreover, PTS intervention regulated proinflammatory cytokines such as TNF-α, IL-6, and IL-1 in serum, and MPO and NO in colon. Interestingly, PTS could significantly inhibit UC mouse metabolic dysfunction by reversing abnormal changes in 29 metabolites and regulating eleven metabolic pathways. PTS has potential application in the treatment of UC and could alleviate UC in mice by affecting riboflavin metabolism, arachidonic acid metabolism, glycerophospholipid metabolism, retinol metabolism, and steroid hormone biosynthesis and by regulating pentose and glucuronate conversion, linoleic acid metabolism, phenylalanine metabolism, ether lipid metabolism, sphingolipid metabolism, and tyrosine metabolism, which points at a direction for further research and for the development of PTS as a novel natural agent.
Stroke, one of the leading causes of disability and death worldwide, is a severe neurological disease that threatens human life. Protopanaxatriol (PPT), panaxatriol-type saponin aglycone, is a rare saponin that exists in Panax ginseng and Panax Noto-ginseng. In this study, we established an oxygen-glucose deprivation (OGD)-PC12 cell model and middle cerebral artery occlusion/reperfusion (MCAO/R) model to evaluate the neuroprotective effects of PPT in vitro and in vivo. In addition, metabolomics analysis was performed on rat plasma and brain tissue samples to find relevant biomarkers and metabolic pathways. The results showed that PPT could significantly regulate the levels of LDH, MDA, SOD, TNF-α and IL-6 factors in OGD-PC12 cells in vitro. PPT can reduce the neurological deficit score and infarct volume of brain tissue in rats, restore the integrity of the blood-brain barrier, reduce pathological damage, and regulate TNF-α, IL-1β, IL-6, MDA, and SOD factors. In addition, the results of metabolomics found that PPT can regulate 19 biomarkers involving five metabolic pathways, including amino acid metabolism, arachidonic acid metabolism, sphingolipid metabolism, and glycerophospholipid metabolism. Thus, it could be inferred that PPT might serve as a novel natural agent for MCAO/R treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.