Abstract-Fractal analysis is currently in full swing in particular in the medical field because of the fractal nature of natural phenomena (vascular system, nervous system, bones, breast tissue ...). For this, many algorithms for estimating the fractal dimension have emerged. Most of them are based on the principle of box counting. In this work we propose a new method for calculating fractal attributes based on contrast homogeneity and energy that have been extracted from gray level co-occurrence matrix. As application we are investigated in the characterization and classification of mammographic images with SuportVectorMachine classifier. We considered in particular images with tumor masses and architectural disorder to compare with normal ones. We calculate, for comparison the fractal dimension obtained by a reference method (triangular prism) and perform a classification similar to the previous. Results obtained with new algorithm are better than reference method (classification rate is 0.91 vs 0.65). Hence new fractal attributes are relevant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.