Solution-processed 2D perovskite films generally contain mixed quantum wells (QWs) with multiple well width distribution, which seriously weakens the charge transfer. To achieve regulation of the QW width, strategies to optimize the crystallization dynamics of 2D perovskite films are urgently needed. In this review, systematic summary on QW distribution and guidelines for 2D perovskite phase regulation is provided, aiming to establish a general manual for preparing efficient 2D perovskite solar cells (PSCs). The factors affecting the distribution of multiple-QWs in 2D perovskite films, including component engineering, additive engineering, process optimization, are first generalized. Then an extensive review of these factors that are widely used to reconstruct 2D perovskite crystallization process is conducted. Leveraging these insights, the effect of QWs distributions on 2D PSCs properties is also summarized. Similarly, considering the crystallization kinetics and device performance, the QWs width control of 2D perovskite films from the aspects of ligand engineering, precursor design, and fabrication optimization, is rationalized. Finally, an outlook on how to realize ordered QWs distribution in perovskite films for efficient 2D PSCs is proposed.
Low‐dimensional Ruddlesden‐Popper (LDRP) perovskites still suffer from inferior carrier transport properties. Here, we demonstrate that efficient exciton dissociation and charge transfer can be achieved in LDRP perovskite by introducing γ‐aminobutyric acid (GABA) as a spacer. The hydrogen bonding links adjacent spacing sheets in (GABA)2MA3Pb4I13 (MA=CH3NH3+), leading to the charges localized in the van der Waals gap, thereby constructing “charged‐bridge” for charge transfer through the spacing region. Additionally, the polarized GABA weakens dielectric confinement, decreasing the (GABA)2MA3Pb4I13 exciton binding energy as low as ≈73 meV. Benefiting from these merits, the resultant GABA‐based solar cell yields a champion power conversion efficiency (PCE) of 18.73 % with enhanced carrier transport properties. Furthermore, the unencapsulated device maintains 92.8 % of its initial PCE under continuous illumination after 1000 h and only lost 3 % of its initial PCE under 65 °C for 500 h.
Low-dimensional Ruddlesden-Popper (LDRP) perovskites still suffer from inferior carrier transport properties. Here, we demonstrate that efficient exciton dissociation and charge transfer can be achieved in LDRP perovskite by introducing γ-aminobutyric acid (GABA) as a spacer. The hydrogen bonding links adjacent spacing sheets in (GABA) 2 MA 3 Pb 4 I 13 (MA = CH 3 NH 3 + ), leading to the charges localized in the van der Waals gap, thereby constructing "charged-bridge" for charge transfer through the spacing region. Additionally, the polarized GABA weakens dielectric confinement, decreasing the (GABA) 2 MA 3 Pb 4 I 13 exciton binding energy as low as � 73 meV. Benefiting from these merits, the resultant GABA-based solar cell yields a champion power conversion efficiency (PCE) of 18.73 % with enhanced carrier transport properties. Furthermore, the unencapsulated device maintains 92.8 % of its initial PCE under continuous illumination after 1000 h and only lost 3 % of its initial PCE under 65 °C for 500 h.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.