With current trends to progressively miniaturize optical systems, it is now essential to look for alternative methods to control light at extremely small dimensions. Metalenses are composed of subwavelength nanostructures and have an excellent ability to manipulate the polarization, phase, and amplitude of incident light. Although great progress of metalenses has been made, the compact metalens-integrated devices have not been researched adequately. In the study, we present compact imaging devices for near-infrared microscopy, in which a metalens is exploited. The indicators including resolution, magnification, and image quality are investigated via imaging several specimens of intestinal cells to verify the overall performance of the imaging system. The further compact devices, where the metalens is integrated directly on the CMOS imaging sensor, are also researched to detect biomedical issues. This study provides an approach to constructing compact imaging devices based on metalenses for near-infrared microscopy, micro-telecopy, etc., which can promote the miniaturization tending of futural optical systems.
In this study, the high-efficiency phase control Si metasurfaces are investigated based on aperiodic nanoarrays unlike widely-used period structures, the aperiodicity of which providing additional freedom to improve metasurfaces’ performance. Firstly, the phase control mechanism of Huygens nanoblocks is demonstrated, particularly the internal electromagnetic resonances and the manipulation of effective electrical/magnetic polarizabilities. Then, a group of high-transmission Si nanoblocks with 2π phase control is sought by sweeping the geometrical parameters. Finally, several metasurfaces, such as grating and parabolic lens, are numerically realized by the nanostructures with high efficiency. The conversion efficiency of the grating reaches 80%, and the focusing conversion efficiency of the metalens is 99.3%. The results show that the high-efficiency phase control metasurfaces can be realized based on aperiodic nanoarrays, i.e., additional design freedom.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.