We propose a model that extracts a sketch from a colorized image in such a way that the extracted sketch has a line style similar to a given reference sketch while preserving the visual content identically to the colorized image. Authentic sketches drawn by artists have various sketch styles to add visual interest and contribute feeling to the sketch. However, existing sketch-extraction methods generate sketches with only one style. Moreover, existing style transfer models fail to transfer sketch styles because they are mostly designed to transfer textures of a source style image instead of transferring the sparse line styles from a reference sketch. Lacking the necessary volumes of data for standard training of translation systems, at the core of our GAN-based solution is a self-reference sketch style generator that produces various reference sketches with a similar style but different spatial layouts. We use independent attention modules to detect the edges of a colorized image and reference sketch as well as the visual correspondences between them. We apply several loss terms to imitate the style and enforce sparsity in the extracted sketches. Our sketch-extraction method results in a close imitation of a reference sketch style drawn by an artist and outperforms all baseline methods. Using our method, we produce a synthetic dataset representing various sketch styles and improve the performance of auto-colorization models, in high demand in comics. The validity of our approach is confirmed via qualitative and quantitative evaluations.
There has been significant progress in generating an animatable 3D human avatar from a single image. However, recovering texture for the 3D human avatar from a single image has been relatively less addressed. Because the generated 3D human avatar reveals the occluded texture of the given image as it moves, it is critical to synthesize the occluded texture pattern that is unseen from the source image. To generate a plausible texture map for 3D human avatars, the occluded texture pattern needs to be synthesized with respect to the visible texture from the given image. Moreover, the generated texture should align with the surface of the target 3D mesh. In this paper, we propose a texture synthesis method for a 3D human avatar that incorporates geometry information. The proposed method consists of two convolutional networks for the sampling and refining process. The sampler network fills in the occluded regions of the source image and aligns the texture with the surface of the target 3D mesh using the geometry information. The sampled texture is further refined and adjusted by the refiner network. To maintain the clear details in the given image, both sampled and refined texture is blended to produce the final texture map. To effectively guide the sampler network to achieve its goal, we designed a curriculum learning scheme that starts from a simple sampling task and gradually progresses to the task where the alignment needs to be considered. We conducted experiments to show that our method outperforms previous methods qualitatively and quantitatively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.