Summary
This study mainly focuses on determining the optimal configuration that efficiently utilizes liquefied natural gas (LNG) cold energy in hydrogen precooling for liquid hydrogen production. To achieve this goal, two different configurations are designed: (a) adding LNG cold energy to the existing hydrogen precooling cycle and (b) replacing the existing hydrogen precooling cycle with LNG cold energy. An equilibrium hydrogen model is developed to reflect the thermodynamic property of ortho‐para conversion of hydrogen. Bayesian optimization is performed to determine the optimal operating conditions which minimize the specific energy consumption for all configurations. The specific energy consumption of the configuration involving hydrogen precooling with only LNG is 5.613 kWh/kg‐LH2, and it is reduced by 8.13% and 3.19% from the base case design and the configuration involving hydrogen precooling with both LNG and a mixed refrigerant cycle, respectively. In addition, a techno‐economic analysis is conducted. Compare to the base case design, the capital cost and operating cost of the design replacing hydrogen precooling with LNG are reduced by 31.76% and 11.55%, respectively. This study shows that the proposed design of replacing the hydrogen precooling cycle with an LNG stream can save energy consumption, moreover, it is highly effective for capital investment saving due to its simple configuration.
The hydrogen liquefaction process is highly energy-intensive owing to its cryogenic characteristics, and a large proportion of the total energy is consumed in the subcooling cycle. This study aimed to develop an efficient configuration for the subcooling cycle in the hydrogen liquefaction process. The He-Ne Brayton cycle is one of the most energy-efficient cycles of the various proposed hydrogen liquefaction processes, and it was selected as the base case configuration. To improve its efficiency and economic potential, two different process configurations were proposed: (configuration 1) a dual-pressure cycle that simplified the process configuration, and (configuration 2) a split triple-pressure cycle that decreased the flow rate of the medium- and high-pressure compressors. The ortho–para conversion heat of hydrogen is considered by using heat capacity data of equilibrium hydrogen. Genetic algorithm-based optimization was also conducted to minimize the energy consumption of each configuration, and the optimization results showed that the performance of configuration 1 was worse than that of the base case configuration. In this respect, although less equipment was used, the compression load on each compressor was very intensive, which increased the energy requirements and costs. Configuration 2 provided the best results with a specific energy consumption of 5.69 kWh/kg (3.2% lower than the base case configuration). The total expense of configuration 2 shows the lowest value which is USD 720 million. The process performance improvements were analyzed based on the association between the refrigerant composition and the heat exchange efficiency. The analysis demonstrated that energy efficiency and costs were both improved by dividing the pressure levels and splitting the refrigerant flow rate in configuration 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.