We present a novel 3D reconstruction system that can generate a stable triangle mesh using data from multiple RGB-D sensors in real time for dynamic scenes. The first part of the system uses moving least squares (MLS) point set surfaces to smooth and filter point clouds acquired from RGB-D sensors. The second part of the system generates triangle meshes from point clouds. The whole pipeline is executed on the GPU and is tailored to scale linearly with the size of the input data. Our contributions include changes to the MLS method for improving meshing, a fast triangle mesh generation method and GPU implementations of all parts of the pipeline.
Multi-view dynamic three-dimensional reconstruction has typically required the use of custom shutter-synchronized camera rigs in order to capture scenes containing rapid movements or complex topology changes. In this paper, we demonstrate that multiple unsynchronized low-cost RGB-D cameras can be used for the same purpose. To alleviate issues caused by unsynchronized shutters, we propose a novel depth frame interpolation technique that allows synchronized data capture from highly dynamic 3D scenes. To manage the resulting huge number of input depth images, we also introduce an efficient moving least squares-based volumetric reconstruction method that generates triangle meshes of the scene. Our approach does not store the reconstruction volume in memory, making it memory-efficient and scalable to large scenes. Our implementation is completely GPU based and works in real time. The results shown herein, obtained with real data, demonstrate the effectiveness of our proposed method and its advantages compared to stateof-the-art approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.