Electromyography (EMG) signals can be used for clinical diagnosis and biomedical applications. It is very important to reduce noise and to acquire accurate signals for the usage of the EMG signals in biomedical engineering. Since EMG signal noise has the time-varying and random characteristics, the present study proposes an adaptive Kalman filter (AKF) denoising method based on an autoregressive (AR) model. The AR model is built by applying the EMG signal, and the relevant parameters are integrated to find the state space model required to optimally estimate AKF, eliminate the noise in the EMG signal, and restore the damaged EMG signal. To be specific, AR autoregressive dynamic modeling and repair for distorted signals are affected by noise, and AKF adaptively can filter time-varying noise. The denoising method based on the self-learning mechanism of AKF exhibits certain capabilities to achieve signal tracking and adaptive filtering. It is capable of adaptively regulating the model parameters in the absence of any prior statistical knowledge regarding the signal and noise, which is aimed at achieving a stable denoising effect. By comparatively analyzing the denoising effects exerted by different methods, the EMG signal denoising method based on the AR-AKF model is demonstrated to exhibit obvious advantages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.