In this paper, we propose a novel two-stage transformer with GhostNet, which improves the performance of the small object detection task. Specifically, based on the original Deformable Transformers for End-to-End Object Detection (deformable DETR), we chose GhostNet as the backbone to extract features, since it is better suited for an efficient feature extraction. Furthermore, at the target detection stage, we selected the 300 best bounding box results as regional proposals, which were subsequently set as primary object queries of the decoder layer. Finally, in the decoder layer, we optimized and modified the queries to increase the target accuracy. In order to validate the performance of the proposed model, we adopted a widely used COCO 2017 dataset. Extensive experiments demonstrated that the proposed scheme yielded a higher average precision (AP) score in detecting small objects than the existing deformable DETR model.
Road segmentation has been one of the leading research areas in the realm of autonomous driving cars due to the possible benefits autonomous vehicles can offer. Significant reduction of crashes, greater independence for the people with disabilities, and reduced traffic congestion on the roads are some of the vivid examples of them. Considering the importance of self-driving cars, it is vital to develop models that can accurately segment drivable regions of roads. The recent advances in the area of deep learning have presented effective methods and techniques to tackle road segmentation tasks effectively. However, the results of most of them are not satisfactory for implementing them into practice. To tackle this issue, in this paper, we propose a novel model, dubbed as TA-Unet, that is able to produce quality drivable road region segmentation maps. The proposed model incorporates a triplet attention module into the encoding stage of the U-Net network to compute attention weights through the triplet branch structure. Additionally, to overcome the class-imbalance problem, we experiment on different loss functions, and confirm that using a mixed loss function leads to a boost in performance. To validate the performance and efficiency of the proposed method, we adopt the publicly available UAS dataset, and compare its results to the framework of the dataset and also to four state-of-the-art segmentation models. Extensive experiments demonstrate that the proposed TA-Unet outperforms baseline methods both in terms of pixel accuracy and mIoU, with 98.74% and 97.41%, respectively. Finally, the proposed method yields clearer segmentation maps on different sample sets compared to other baseline methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.