Many reagents have emerged to study the function of specific enzymes in vitro. On the other hand, target specific reagents are scarce or need improvement, allowing investigations of the function of individual enzymes in their native cellular context. Here we report the development of a target-selective fluorescent small-molecule activity-based DUB probe that is active in live cells and an in vivo animal model. The probe labels active ubiquitin carboxy-terminal hydrolase L1 (UCHL1), also known as neuron-specific protein PGP9.5 (PGP9.5) and Parkinson disease 5 (PARK5), a DUB active in neurons that constitutes 1 to 2% of the total brain protein. UCHL1 variants have been linked with neurodegenerative disorders Parkinson’s and Alzheimer’s diseases. In addition, high levels of UCHL1 also correlate often with cancer and especially metastasis. The function of UCHL1 activity or its role in cancer and neurodegenerative disease is poorly understood and few UCHL1-specific activity tools exist. We show that the reagents reported here are specific to UCHL1 over all other DUBs detectable by competitive activity-based protein profiling and by mass spectrometry. Our cell-penetrable probe, which contains a cyanimide reactive moiety, binds to the active-site cysteine residue of UCHL1 in an activity-dependent manner. Its use is demonstrated by the fluorescent labeling of active UCHL1 both in vitro and in live cells. We furthermore show that this probe can selectively and spatiotemporally report UCHL1 activity during the development of zebrafish embryos. Our results indicate that our probe has potential applications as a diagnostic tool for diseases with perturbed UCHL1 activity.
SummaryGenome architecture has emerged as a critical element of transcriptional regulation, although its role in the control of cell identity is not well understood. Here we use transcription factor (TF)-mediated reprogramming to examine the interplay between genome architecture and transcriptional programs that transition cells into the myogenic identity. We recently developed new methods for evaluating the topological features of genome architecture based on network centrality. Through integrated analysis of these features of genome architecture and transcriptome dynamics during myogenic reprogramming of human fibroblasts we find that significant architectural reorganization precedes activation of a myogenic transcriptional program. This interplay sets the stage for a critical transition observed at several genomic scales reflecting definitive adoption of the myogenic phenotype. Subsequently, TFs within the myogenic transcriptional program participate in entrainment of biological rhythms. These findings reveal a role for topological features of genome architecture in the initiation of transcriptional programs during TF-mediated human cellular reprogramming.
In many cases, cancer patients do not die of a primary tumor, but rather because of metastasis. Although numerous rodent models are available for studying cancer metastasis in vivo, other efficient, reliable, low-cost models are needed to quickly access the potential effects of (epi)genetic changes or pharmacological compounds. As such, we illustrate and explain the feasibility of xenograft models using human breast cancer cells injected into zebrafish embryos to support this goal. Under the microscope, fluorescent proteins or chemically labeled human breast cancer cells are transplanted into transgenic zebrafish embryos, Tg (fli:EGFP), at the perivitelline space or duct of Cuvier (Doc) 48 h after fertilization. Shortly afterwards, the temporal-spatial process of cancer cell invasion, dissemination, and metastasis in the living fish body is visualized under a fluorescent microscope. The models using different injection sites, i.e., perivitelline space or Doc are complementary to one another, reflecting the early stage (intravasation step) and late stage (extravasation step) of the multistep metastatic cascade of events. Moreover, peritumoral and intratumoral angiogenesis can be observed with the injection into the perivitelline space. The entire experimental period is no more than 8 days. These two models combine cell labeling, micro-transplantation, and fluorescence imaging techniques, enabling the rapid evaluation of cancer metastasis in response to genetic and pharmacological manipulations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.