Clamping force control system is essential for clamping tasks that require high precision. In this paper, Active Disturbance Rejection Controller (ADRC) is applied for clamping force control system, aiming to achieve higher control precision. Furthermore, the CPSO-ADRC system is proposed and implemented by optimizing the critical parameters of ordinary ADRC using chaos particle swarm optimization (CPSO) algorithm. To verify the effectiveness of CPSO-ADRC, Particle Swarm Optimization- (PSO-) ADRC is introduced as a comparison. The simulation results show that the CPSO-ADRC can effectively improve the control quality with faster dynamic response and better command tracking performance compared to ordinary ADRC and PSO-ADRC.
Silicon carbonitride (SiCN) has superior mechanical properties at high temperature, but its structural properties in molecular scale are not clear. In this study, atomistic simulations were applied to study the molecular structure of amorphous SiCN. The atomistic structures obtained by large-scale molecular dynamics simulations agree with current experimental results, and moreover, provide more details on molecular structure. The Si-C bonds generally keep stable proportion for all the three cases, which means the additional carbon tends to form free carbon network rather than Si-C bonds. Si-CN 3 is dominant inSi-C/N tetrahedron, and as expected the increase of C content in SiCN tends to form more Si-C 2 N 2 and Si-C 3 N tetrahedra.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.