Syngas, a CO and H2 mixture mostly generated from non-renewable fossil fuels, is an essential feedstock for production of liquid fuels. Electrochemical reduction of CO2 and H+/H2O is an alternative renewable route to produce syngas. Here we introduce the concept of coupling a hydrogen evolution reaction (HER) catalyst with a CDots/C3N4 composite (a CO2 reduction catalyst) to achieve a cheap, stable, selective and efficient route for tunable syngas production. Co3O4, MoS2, Au and Pt serve as the HER component. The Co3O4-CDots-C3N4 electrocatalyst is found to be the most efficient among the combinations studied. The H2/CO ratio of the produced syngas is tunable from 0.07:1 to 4:1 by controlling the potential. This catalyst is highly stable for syngas generation (over 100 h) with no other products besides CO and H2. Insight into the mechanisms balancing between CO2 reduction and H2 evolution when applying the HER-CDots-C3N4 catalyst concept is provided.
Self-healing is the way by which nature repairs damage and prolongs the life of bio entities. A variety of practical applications require self-healing materials in general and self-healing polymers in particular. Different (complex) methods provide the rebonding of broken bonds, suppressing crack, or local damage propagation. Here, a simple, versatile, and cost-effective methodology is reported for initiating healing in bulk polymers and self-healing and anticorrosion properties in polymer coatings: introduction of carbon dots (CDs), 5 nm sized carbon nanocrystallites, into the polymer matrix forming a composite. The CDs are blended into polymethacrylate, polyurethane, and other common polymers. The healing/self-healing process is initiated by interfacial bonding (covalent, hydrogen, and van der Waals bonding) between the CDs and the polymer matrix and can be optimized by modifying the functional groups which terminate the CDs. The healing properties of the bulk polymer-CD composites are evaluated by comparing the tensile strength of pristine (bulk and coatings) composites to those of fractured composites that are healed and by following the self-healing of scratches intentionally introduced to polymer-CD composite coatings. The composite coatings not only possess self-healing properties but also have superior anticorrosion properties compared to those of the pure polymer coatings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.