Carrier transport is an equally decisive factor as carrier separation for elevating photocatalytic efficiency. However, limited by indefinite structures and low crystallinities, studies on enhancing carrier transport of organic photocatalysts are still in their infancy. Here, we develop an σ-linkage length modulation strategy to enhance carrier transport in imidazole-alkyl-perylene diimide (IMZ-alkyl-PDI, corresponding to D-σ-A) photocatalysts by controlling π-π stacking distance. Ethyllinkage can shorten π-π stacking distance (3.19 Å) the most among IMZ-alkyl-PDIs (where alkyl = none, ethyl, and n-propyl) via minimizing steric hindrance between D and A moieties, which leads to the fastest carrier transport rates. Thereby, IMZ-ethyl-PDI exhibits remarkable enhancement in phenol degradation with 32fold higher rates than IMZ-PDI, as well as the oxygen evolution rate (271-fold increased). In microchannel reactors, IMZ-ethyl-PDI also presents 81.5 % phenol removal with high-flux surface hydraulic loading (44.73 L m À 2 h À 1 ). Our findings provide a promising molecular design guideline for high-performance photocatalysts and elucidate crucial internal carrier transport mechanisms.
Carrier transport is an equally decisive factor as carrier separation for elevating photocatalytic efficiency. However, limited by indefinite structures and low crystallinities, studies on enhancing carrier transport of organic photocatalysts are still in their infancy. Here, we develop an σ‐linkage length modulation strategy to enhance carrier transport in imidazole‐alkyl‐perylene diimide (IMZ‐alkyl‐PDI, corresponding to D‐σ‐A) photocatalysts by controlling π–π stacking distance. Ethyl‐linkage can shorten π–π stacking distance (3.19 Å) the most among IMZ‐alkyl‐PDIs (where alkyl=none, ethyl, and n‐propyl) via minimizing steric hindrance between D and A moieties, which leads to the fastest carrier transport rates. Thereby, IMZ‐ethyl‐PDI exhibits remarkable enhancement in phenol degradation with 32‐fold higher rates than IMZ‐PDI, as well as the oxygen evolution rate (271‐fold increased). In microchannel reactors, IMZ‐ethyl‐PDI also presents 81.5 % phenol removal with high‐flux surface hydraulic loading (44.73 L m−2 h−1). Our findings provide a promising molecular design guideline for high‐performance photocatalysts and elucidate crucial internal carrier transport mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.