This study aimed to elaborate on the role of salt concentration on pickled Brassica napus leaf and stem (BLS); it also contributed to the development of low-salt and healthy Brassica napus products in the harvest period. Five sets of pickled BLS samples were prepared, and the physicochemical parameters, free amino acids (FAAs), and the volatile flavor components (VFCs) were analyzed after fermentation. Results showed that some antioxidants, FAAs, and VFCs underwent dynamic changes during fermentation. Nitrite increased with an increase in the salt concentration used for fermentation. Pickled BLS contained a wide range of FAAs; a total of 23 were detected, which might be used as a source of amino acid supplementation. The VFCs were analyzed via headspace solid-phase micro-extraction (HS-SPME) combined with gas chromatography and mass spectrometry (GC-MS). A total of 51 VFCs were tentatively identified. The contribution to flavor could be expressed by the relative odor activity value (ROAV). Salt is one of the important factors affecting the quality of vegetable fermentation. Therefore, for large-scale pickled BLS production, a key issue is to balance the low salt concentration and high fermentation quality. Under the action of salt and microorganisms, the fresh BLS fermented via dry pickling, which not only improved its FAAs and VFCs, endowed the production with a unique flavor, but also prolonged the shelf life.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.