Interactive recommender system (IRS) has drawn huge attention because of its flexible recommendation strategy and the consideration of optimal long-term user experiences. To deal with the dynamic user preference and optimize accumulative utilities, researchers have introduced reinforcement learning (RL) into IRS. However, RL methods share a common issue of sample efficiency, i.e., huge amount of interaction data is required to train an effective recommendation policy, which is caused by the sparse user responses and the large action space consisting of a large number of candidate items. Moreover, it is infeasible to collect much data with explorative policies in online environments, which will probably harm user experience. In this work, we investigate the potential of leveraging knowledge graph (KG) in dealing with these issues of RL methods for IRS, which provides rich side information for recommendation decision making. Instead of learning RL policies from scratch, we make use of the prior knowledge of the item correlation learned from KG to (i) guide the candidate selection for better candidate item retrieval, (ii) enrich the representation of items and user states, and (iii) propagate user preferences among the correlated items over KG to deal with the sparsity of user feedback. Comprehensive experiments have been conducted on two real-world datasets, which demonstrate the superiority of our approach with significant improvements against state-of-the-arts.
Nowadays, it has been a focus to encapsulate a greater variety and amount of metal species into fullerene cages, due to their diverse structures and fascinating properties. Nevertheless, the encapsulation...
In recent years, more and more researchers have focused on emotion recognition methods based on electroencephalogram (EEG) signals. However, most studies only consider the spatio-temporal characteristics of EEG and the modelling based on this feature, without considering personality factors, let alone studying the potential correlation between different subjects. Considering the particularity of emotions, different individuals may have different subjective responses to the same physical stimulus. Therefore, emotion recognition methods based on EEG signals should tend to be personalized. This paper models the personalized EEG emotion recognition from the macro and micro levels. At the macro level, we use personality characteristics to classify the individuals’ personalities from the perspective of ‘birds of a feather flock together’. At the micro level, we employ deep learning models to extract the spatio-temporal feature information of EEG. To evaluate the effectiveness of our method, we conduct an EEG emotion recognition experiment on the ASCERTAIN dataset. Our experimental results demonstrate that the recognition accuracy of our proposed method is 72.4% and 75.9% on valence and arousal, respectively, which is 10.2% and 9.1% higher than that of no consideration of personalization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.