The emergence of multi-drug resistant pathogenic bacteria represents a serious and growing threat to national healthcare systems. Most pressing is an immediate need for the development of novel antibacterial agents to treat Gram-negative multi-drug resistant infections, including the opportunistic, hospital-derived pathogen, Acinetobacter baumannii. Herein we report a naturally occurring 1,2-benzisoxazole with minimum inhibitory concentrations as low as 6.25 μg ml−1 against clinical strains of multi-drug resistant A. baumannii and investigate its possible mechanisms of action. This molecule represents a new chemotype for antibacterial agents against A. baumannii and is easily accessed in two steps via de novo synthesis. In vitro testing of structural analogs suggest that the natural compound may already be optimized for activity against this pathogen. Our results demonstrate that supplementation of 4-hydroxybenzoate in minimal media was able to reverse 1,2-benzisoxazole’s antibacterial effects in A. baumannii. A search of metabolic pathways involving 4-hydroxybenzoate coupled with molecular modeling studies implicates two enzymes, chorismate pyruvate-lyase and 4-hydroxybenzoate octaprenyltransferase, as promising leads for the target of 3,6-dihydroxy-1,2-benzisoxazole.
Inflammation and oxidative stress caused by fine particulate matter (PM2.5) increase the incidence and mortality rates of respiratory disorders. Rosavin is the main chemical component of Rhodiola plants, which exerts anti‐oxidative and antiinflammatory effects. In this research, the potential therapeutic effect of rosavin was investigated by the PM2.5‐induced lung injury rat model. Rats were instilled with PM2.5 (7.5 mg/kg) suspension intratracheally, while rosavin (50 mg/kg, 100 mg/kg) was delivered by intraperitoneal injection before the PM2.5 injection. It was observed that rosavin could prevent lung injury caused by PM2.5. PM2.5 showed obvious ferroptosis‐related ultrastructural alterations, which were significantly corrected by rosavin. The pretreatment with rosavin downregulated the levels of tissue iron, malondialdehyde, and 4‐hydroxynonenal, and increased the levels of glutathione. The expression of nuclear factor E2‐related factor 2 (Nrf2) was upregulated by rosavin, together with other ferroptosis‐related proteins. RSL3, a specific ferroptosis agonist, reversed the beneficial impact of rosavin. The network pharmacology approach predicted the activation of rosavin on the phosphatidylinositol 3‐kinase (PI3K)/protein kinase B (Akt) signaling pathway. LY294002, a potent PI3K inhibitor, decreased the upregulation of Nrf2 induced by rosavin. In conclusion, rosavin prevented lung injury induced by PM2.5 stimulation and suppressed ferroptosis via upregulating PI3K/Akt/Nrf2 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.