Across to half of World's population, rice is being provided as a staple food. Milled rice about 480 million metric tons is being produced annually where 50% of rice is being grown and consumed by China and India only (Muthayya Abstract | Present study was conducted to assess the effect of drying on physical properties of Nanjing 9108 paddy variety using response surface methodology. A mathematical model was used predicting the effects of indicators i.e. temperature (40.86, 45, 55, 65 and 69.14 ºC) and time (4.11, 30, 92.5, 155 and 180 min) each with five levels on observed parameters. The suitability of quadratic model for present study was described by the responses having acceptable R 2 and Adj. R 2 values, non-significance of lack of fit which compares residual to pure error and significance of analysis of variance which is essential for testing the applicability of the model. Predicted optimum temperature and time were 63 ºC and 142.5 min respectively and predicted length, width, thickness, TKW, bulk density, true density, porosity and hardness under these conditions were 6.72mm, 3.32mm, 2.27mm, 27.38 g, 716.78 kg m -3 , 1459.14 kg m -3 , 51.24% and 45.26 N respectively. The results further revealed that the effect of temperature and time on paddy decreased with process except porosity and hardness, which increased as affected by these conditions. The results showed that the model work was valid for predicting the responses being affected by the indicators, and optimizing the physical properties of paddy. Central composite design of response surface methodology was successfully used studying the dependence of physical properties of paddy. The valuable results of this study can be utilised by the rice processing industries.
W heat (Triticum aestivum L.) is cultivated in diverse environments across the globe. It is consumed by 35% of the total world population as a staple food (IDRC, 2010) , while overall it is consumed by more than 4.5 billion peoples providing 21% in terms of food calories, and more than 20% as protein (Soomro et al., 2017). Besides this, it is a highly profit-able crop for many small landholding farmers (Arzani and Ashraf, 2017). The cultivation of wheat crop is of great significance which provides an ample amount of food and nutrition to under-developed countries, and can be handful to overcome food insecurity and nutritional insecurity in the world (Grote et al., 2021) . Long et al. (2015) reported that by 2050, the annually demand for the wheat crop will rise at 1.6%. Therefore, to meet this proliferate demand average yield of Abstract | The virulence of rust diseases in wheat crop like leaf, stripe and stem-rust declines the grain quality and productivity. Cultivars having a durable rust resistance is an effective method to control the spread of rust disease in cereal crops particularly in wheat. The experiment was conducted on fifty-two wheat lines comprised of forty-five double haploids of wheat along with seven wheat genotypes. Besides that, three positive checks and three SSR primers were also included in the study to check the durability i.e. Opata-85 Sr2/Lr27check, Pavon-76 (Yr-29/Lr-46) and Tukuru (Yr18/Lr34) respectively. The molecular markers screening results indicated that the primer Sr2/Lr27 was present in almost all of the double haploids and genotypes except the Nesser and Tukuru varieties. The Yr29/Lr46 gene complex was present in all double haploids and genotypes except for Nesser, Opata-85, inqilab-91 and Tukuru. the gene complex Yr18/Lr34 was present in eight double haploids, and only one genotype showed its presence, however the rest of the genotypes lacked this gene complex. The obtained results intimated that the 8 double haploids 33, 34, 44, 45, 46, 48, 53, 54, and genotype weebil-1 contained all the slow rusting genes complex i.e. Yr18/Lr34, Yr29/ Lr46 and Sr2/Lr27. Therefore, detection of slow rusting gene complex in these varieties with the assistance of molecular markers can be utilized for slow-rust resistance. Furthermore, the selected markers can be used as a primary choice for detecting rust resistance genes specifically in the wheat breeding population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.