Risky and aggressive driving maneuvers are considered a significant indicator for traffic accident occurrence as well as they aggravate their severity. Traffic violations caused by such uncivilized driving behavior is a global issue. Studies in existing literature have used statistical analysis methods to explore key contributing factors toward aggressive driving and traffic violations. However, such methods are unable to capture latent correlations among predictor variables, and they also suffer from low prediction accuracies. This study aimed to comprehensively investigate different traffic violations using spatial analysis and machine learning methods in the city of Luzhou, China. Violations committed by taxi drivers are the focus of the current study since they constitute a significant proportion of total violations reported in the city. Georeferenced violation data for the year 2016 was obtained from the traffic police department. Detailed descriptive analysis is presented to summarize key statistics about various violation types. Results revealed that over-speeding was the most prevalent violation type observed in the study area. Frequency-based nearest neighborhood cluster methods in Arc map Geographic Information System (GIS) were used to develop hotspot maps for different violation types that are vital for prioritizing and conducting treatment alternatives efficiently. Finally, different machine learning (ML) methods, including decision tree, AdaBoost with a base estimator decision tree, and stack model, were employed to predict and classify each violation type. The proposed methods were compared based on different evaluation metrics like accuracy, F-1 measure, specificity, and log loss. Prediction results demonstrated the adequacy and robustness of proposed machine learning (ML) methods. However, a detailed comparative analysis showed that the stack model outperformed other models in terms of proposed evaluation metrics.
Among several known zeolites, silicoaluminophosphate (SAPO)‐34 zeolite exhibits a distinct chemical structure, unique pore size distribution, and chemical, thermal, and ion exchange capabilities, which have recently attracted considerable research attention. Global carbon dioxide (CO2) emissions are a serious environmental issue. Current atmospheric CO2 level exceeds 414 parts per million (ppm), which greatly influences humans, fauna, flora, and the ecosystem as a whole. Zeolites play a vital role in CO2 removal, recycling, and utilization. This review summarizes the properties of the SAPO‐34 zeolite and its role in CO2 capture and separation from air and natural gas. In addition, due to their high thermal stability and catalytic nature, CO2 conversions into valuable products over single metal, bi‐metallic, and tri‐metallic catalysts and their oxides supported on SAPO‐34 were also summarized. Considering these accomplishments, substantial problems related to SAPO‐34 are discussed, and future recommendations are offered in detail to predict how SAPO‐34 could be employed for greenhouse gas mitigation.
Reinforced concrete structures are subjected to frequent maintenance and repairs due to steel reinforcement corrosion. Fiber-reinforced polymer (FRP) laminates are widely used for retrofitting beams, columns, joints, and slabs. This study investigated the non-linear capability of artificial intelligence (AI)-based gene expression programming (GEP) modelling to develop a mathematical relationship for estimating the interfacial bond strength (IBS) of FRP laminates on a concrete prism with grooves. The model was based on five input parameters, namely axial stiffness (Eftf), width of FRP plate (bf), concrete compressive strength (fc′), width of groove (bg), and depth of the groove (hg), and IBS was considered the target variable. Ten trials were conducted based on varying genetic parameters, namely the number of chromosomes, head size, and number of genes. The performance of the models was evaluated using the correlation coefficient (R), mean absolute error (MAE), and root mean square error (RMSE). The genetic variation revealed that optimum performance was obtained for 30 chromosomes, 11 head sizes, and 4 genes. The values of R, MAE, and RMSE were observed as 0.967, 0.782 kN, and 1.049 kN for training and 0.961, 1.027 kN, and 1.354 kN. The developed model reflected close agreement between experimental and predicted results. This implies that the developed mathematical equation was reliable in estimating IBS based on the available properties of FRPs. The sensitivity and parametric analysis showed that the axial stiffness and width of FRP are the most influential parameters in contributing to IBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.