Please check the manuscript for details of any other licences that may have been applied and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. You may not engage in further distribution of the material for any profitmaking activities or any commercial gain. You may freely distribute both the url (http://uhra.herts.ac.uk/) and the content of this paper for research or private study, educational, or not-for-profit purposes without prior permission or charge. Take down policy If you believe that this document breaches copyright please contact us providing details, any such items will be temporarily removed from the repository pending investigation.
The term elastomer is a curtailment of two words, which are elastic and polymers. Accordingly, elastomers are polymer materials with elasticity. The significant challenges hindering the development of materials for naval applications, similar to other engineering sectors, include achieving a competitive light elastomeric structure. Marine structures are susceptible to various damage responses due to various loads throughout their service life. Being flexible, elastomer has a low modulus of elasticity, exhibits higher values of failure strain and yield strength. In these regards, elastomers are attractive materials for applications that require elasticity because they offer substantial advantages compared to traditional materials. However, the low fire resistance of these elastomeric materials jeopardizes their use in some critical applications. As a result, elastomeric blends and composites containing flame retardant (FR) additives are commonly used. On the other hand, elastomers possess (i) high strength-to-weight ratio, (ii) excellent impact properties, (iii) low infrared, magnetic, and radar signatures, (iv) excellent durability, and (v) high resilience to extreme loads. Hence, the scope of this study focuses on review and awareness regarding the feasibility of marine applications of elastomers/elastomeric composites, their current scientific and technological drawbacks, and future outlooks or prospects to support several applications in the marine industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.