This paper deals with the aerodynamic performance analysis of the expendable Experimental Flight Test Vehicle under development in the seventh framework programme, namely HEXAFLY-INT. A mission scenario, the different flight segments and events to which the payload is exposed to are described and justified. This allowed the definition of the aerothermo-mechanical loads required to conceptually design all elements on board of the vehicle. This flying test bed is a self-controlled glider configuration that shall face a hypersonic flight starting at about Mach 8, just after the separation from the experimental support module at about 50 km altitude, up to vehicle loss. During this flight, several experiments shall be carried out. The appraisal of the vehicle aerodynamic performance is needed for Flight Mechanics and Guidance, Navigation and Control analysis. In particular, hinge line moments for the EFTV's aileron are also addressed to design the actuation line and to select the actuator device itself. The vehicle made maximum use of databases, expertise, technologies and materials elaborated in previously European community co-funded projects ATLLAS I & II, LAPCAT I & II, and HEXAFLY.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.