Background: Conformal Radiotherapy techniques adapting to the ballistics of delineated volumes allowed significant reduction in excess radiation induced mortality however the increasing number of long-term survivors and expanding use of cardiotoxic drug highlight the persistent need for maximal cardiac possible sparing. The low dose volume of left ventricle are better predictor of acute coronary events than mean heart dose. Materials and Methods: 38 post-MRM patients were randomized to treatment by 3Dimensional Conformal Radiotherapy (3D CRT) and Intensity Modulated Radiotherapy (IMRT) technique. Two tangential beams were used in 3D CRT technique while five to seven (mostly tangential beams) were used in inversely planned IMRT technique. The dose volume parameters of planning target volume, heart and left ventricle were compared. Results: The dosimetry of Planning target volume showed significantly better coverage in IMRT technique (D90, D95) however the D50 was comparable in both the techniques. In dosimetry of heart, the high dose volumes (V30, V40) were nearly comparable in both the techniques. The other dose volume parameters (V5, V10, V20, V25, D33, D67, D100) and the mean dose were significantly lesser in 3D CRT technique along with significantly better sparing of left ventricle (Dmean and V5). Conclusion: The dosimetry of target volume was better with IMRT technique, but this was accompanied by a huge increase in dose to whole heart and specifically the left ventricle which has strong potential to translate into an increased cardiotoxicity. A better distribution of the target region may be obtained by multiple segmentation of the two tangential fields in 3D CRT plans with further reduction in dose to heart and left ventricle.
Purpose: This study is intended to verify and analyze the dosimetric impact of Pre selected beam orientation (PSBO) and Beam angle optimization (BAO) in IMRT for Nasopharyngeal Carcinoma. Twenty patients of Nasopharyngeal carcinom Materials and Methods: a treated with IMRT Plans were recruited for this retrospective study. Varian Medical systems treatment planning systems (TPS), Eclipse of version 13.6 were used for planning. All twenty patients were treated with IMRT plan created by PSBO while choosing beam angle. Another plan using BAO used for choosing beam angles followed by PRO optimization for inverse planning were created. Objectives of PTV and OARs are maintained constant in both the plans. Statistical analyses of both the plans were performed using parameters; Paddick conformity index (PCI), Homogeneity index (HI), Dose delivered to OAR and Delivered MU. The statistical data were analyzed by Student t test. In this study, out of twenty patients, Result: seventeen patients BAO were valid for inverse planning optimization. For three patients beam angles chosen by BAO were invalid. And the dosimetric comparison of seventeen patients between BAO and PSBO was showing similar results except for MU. The p value obtained for all the parameters except MU, were >0.05. On taking into consideration of delivered MU, PSBO has lesser MU than BAO and are statistically signicant. Conclusion: On reviewing the results, it is concluded that both BAO and PSBO are clinically acceptable. But on concerning the delivered MU, PSBO seems to be better method than BAO. Also, it should be taken into account that three of the plans have been failed to optimize in BAO, since the beam angles suggested in this BAO method does not account the limitations of machine. It shows the advantage of PSBO over BAO. Hence, we can conclude that PSBO is a better method in selection of beam angles in Nasopharyngeal Carcinoma cases.
Introduction Adjuvant radiotherapy has an important role in preventing locoregional recurrences. But radiation-induced late sequelae have become an important area of concern. The ideal postmastectomy radiotherapy technique is an area of controversy. The present study was designed to compare two widely practiced conformal techniques, three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy (IMRT), in terms of dosimetry. Material and Methods A total of 50 postmodified radical mastectomy patients were selected and were randomized to treatment either by 3DCRT or IMRT technique. Two opposing tangential beams were used in 3DCRT plans whereas five to seven tangential beams were used for IMRT plans. The prescribed dose was 50 Gy in 25 fractions over 5 weeks. The dosimetric parameters were compared for planning target volume (PTV), lungs, heart, and left ventricle, opposite breast and esophagus. Results The dosimetric parameters of PTV in terms of D95%, D90%, D50%, and Dmean showed no significant difference among both techniques. The IMRT technique had significantly better mean values of Dnear-min/D98% (45.56 vs. 37.92 Gy; p = 0.01) and Dnear-max/D2% (51.47 vs. 53.65 Gy; p < 0.001). Also, conformity index (1.07 vs. 1.29; p = 0.004) and homogeneity index (0.22 vs. 0.46; p = 0.003) were significantly better in IMRT arm.The dosimetric parameters of ipsilateral lung were significantly higher in IMRT arm in terms of mean dose (19.92 vs. 14.69 Gy; p < 0.001) and low/medium dose regions (V5, V10, V13, V15, V20; p < 0.05). However, high-dose regions (V40) were significantly higher in 3DCRT arm (15.57 vs. 19.89 Gy; p = 0.02). In contralateral lung also, mean dose was significantly higher in IMRT technique (3.63 vs. 0.53 Gy; p < 0.0001) along with low-dose regions (V5, V10, V13, V15; p < 0.05) while V20 was comparable between both the arms.In left-sided patients, the heart dose favored 3DCRT technique in terms of mean dose (17.33 vs. 8.51 Gy; p = 0.003), low/medium dose regions (V5, V10, V20; p < 0.05), and doses to partial/whole volumes (D33, D67, D100). But the high-dose regions (V25, V30, V40) were comparable between both the arms. The dosimetry of left ventricle also showed significantly lesser values of mean dose and V5 in 3DCRT technique (p < 0.0001).The opposite breast also showed higher mean dose with IMRT technique (2.60 vs. 1.47 Gy; p = 0.009) along with higher V5 (11.60 vs. 3.83 Gy; p = 0.001). The dosimetric parameters of esophagus showed higher mean dose in IMRT technique (10.04 vs. 3.24 Gy; p < 0.0001) but the high-dose regions V35 and V50 were comparable between both the arms. Conclusion A clear advantage could not be demonstrated with any of the techniques. The IMRT technique led to more conformal and homogenous dose distribution with reduction in high-dose regions in ipsilateral lung while the 3DCRT technique showed lesser mean dose to organs at risk (OARs). The exposure of large volumes of OARs to low doses in IMRT technique may translate to increased long-term radiation-induced complications. The shortcomings of 3DCRT technique can be overcome by using multiple subfields within tangential fields.
Introduction: Radiotherapy in head and neck cancers is treated for several weeks and daily setup and reproducibility is a challenge. This daily variability causes setup errors which accounts planning target volume margins. Reduced PTV margins have to be taken to decrease the dose to the parotid glands, without compromising on loco regional control rates. The present study is done to identify setup errors and see the feasibility to decrease the PTV margins by creating dummy radiotherapy plans in order to decrease dose to parotid glands. Material and Methods: 420 portal images were evaluated for setup errors in three dimensions (Antero Posterior, Left to Right and Superior to Inferior) which were performed in ten patients of oropharyngeal squamous cell carcinoma. All patients were treated in supine position using immobilization cast. After target volume delineation a PTV margin of 7 mm was given. Dosimetric parameters of PTV and organs at risk were assessed. PTV margins were calculated according to three methods proposed by Stroom, Van Herk and ICRU 62. Dummy radiotherapy plans were generated using new PTV margins and compared with 7mm PTV margins. The data was analyzed using 3-way ANNOVA test for statistical significance. Results: The optimum PTV margins were 4mm in LR and SI direction and 7mm in AP direction. The PTV parameters (V95, D95, Dmax, Dmean, HI and CI) had no significant difference among different radiotherapy plans with different PTV margins. There was a significant decrease in the dose to right parotid (39.12 Gy to 32.88Gy; p-0.04), left parotid (37.90 to 31.21Gy; p-0.03) and parotid combined (38.65 to 31.45 Gy; p-0.01) when 7mm PTV margins were reduced to 4mm PTV margins. The results of dummy radiotherapy plans using asymmetric PTV margins (LR-4mm, SI-4mm and AP-7mm) and symmetrical PTV margins (4mm in all directions) are compared with PTV margins (7mm in all directions), in terms of PTV and OAR dosimetric parameters. Conclusion: The decreased PTV margins of 4mm decreases the dose to the parotid significantly. The implementation of radiotherapy plans needs to be supplemented by daily IGRT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.