Different machine learning algorithms have been applied in various domains and have yielded good results. The application of a preferred technique to a named field is determined by the type of datasets and target goal in question. Although some researches have shown different techniques resulting to the same prediction result. However, in this study, a critical analysis of the application of k-Nearest Neighbour (k-NN) and Artificial Neural Network (ANN) has been carried out. This comparative analysis was done using the same datasets (English Premiership League) on this same platform (Rapid Miner). K-NN classification showed a prediction success of 53.33% while that of ANN was 70%. This proved that ANN is a better technique than k-NN for a polynomial label.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.