BACKGROUND: Uterine serous papillary adenocarcinoma (USPC) is a rare but highly aggressive variant of endometrial cancer. Pertuzumab is a new humanised monoclonal antibody (mAb) targeting the epidermal growth factor type II receptor (HER2/neu). We evaluated pertuzumab activity separately or in combination with trastuzumab against primary USPC cell lines expressing different levels of HER2/neu. METHODS: Six USPC cell lines were assessed by immunohistochemistry (IHC), flow cytometry, and real-time PCR for HER2/neu expression. c-erbB2 gene amplification was evaluated using fluorescent in situ hybridisation (FISH). Sensitivity to pertuzumab and trastuzumab-induced antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) was evaluated in 5 h chromium release assays. Pertuzumab cytostatic activity was evaluated using proliferation-based assays. RESULTS: Three USPC cell lines stained heavily for HER2/neu by IHC and showed amplification of the c-erbB2 gene by FISH. The remaining FISH-negative USPCs expressed HER2/neu at 0/1 þ levels. In cytotoxicity experiments against USPC with a high HER2/neu expression, pertuzumab and trastuzumab were similarly effective in inducing strong ADCC. The addition of complementcontaining plasma and interleukin-2 increased the cytotoxic effect induced by both mAbs. In low HER2/neu USPC expressors, trastuzumab was more potent than pertuzumab in inducing ADCC. Importantly, in this setting, the combination of pertuzumab with trastuzumab significantly increased the ADCC effect induced by trastuzumab alone (P ¼ 0.02). Finally, pertuzumab induced a significant inhibition in the proliferation of all USPC cell lines tested, regardless of their HER-2/neu expression. CONCLUSION: Pertuzumab and trastuzumab induce equally strong ADCC and CDC in FISH-positive USPC cell lines. Pertuzumab significantly increases tratuzumab-induced ADCC against USPC with a low HER2/neu expression and may represent a new therapeutic agent in patients harbouring advanced/recurrent and/or refractory USPC.
BACKGROUND: Uterine serous papillary carcinoma (USPC) is a biologically aggressive variant of endometrial cancer. We investigated the expression of Serum Amyloid A (SAA) and evaluated its potential as a serum biomarker in USPC patients. METHODS: SAA gene and protein expression levels were evaluated in USPC and normal endometrial tissues (NEC) by real-time PCR, immunohistochemistry (IHC), flow cytometry and by a sensitive bead-based immunoassay. SAA concentration in 123 serum samples from 51 healthy women, 42 women with benign diseases, and 30 USPC patients were also studied. RESULTS: SAA gene expression levels were significantly higher in USPC when compared with NEC (mean copy number by RT -PCR ¼ 162 vs 2.21; P ¼ 0.0002). IHC revealed diffuse cytoplasmic SAA protein staining in USPC tissues. High intracellular levels of SAA were identified in primary USPC cell lines evaluated by flow cytometry and SAA was found to be actively secreted in vitro. SAA concentrations (mg ml À1 ) had a median (95% CIs) of 6.0 (4.0 -8.9) in normal healthy females and 6.0 (4.2 -8.1) in patients with benign disease (P ¼ 0.92). In contrast, SAA values in the serum of USPC patients had a median (95% CI) of 15.6 (9.2 -56.2), significantly higher than those in the healthy group (P ¼ 0.0005) and benign group (P ¼ 0.0006). Receiver operating characteristics (ROC) analysis of serum SAA to classify advanced-and early-stage USPC yielded an area under the ROC curve of 0.837 (P ¼ 0.0024). CONCLUSION: SAA is not only a liver-secreted protein but is also a USPC cell product. SAA may represent a novel biomarker for USPC to assist in staging patients preoperatively, and to monitor early-disease recurrence and response to therapy.
Background:We studied the genetic fingerprints of ovarian cancer and validated the potential of Mammaglobin b (SCGB2A1), one of the top differentially expressed genes found in our analysis, as a novel ovarian tumour rejection antigen.Methods:We profiled 70 ovarian carcinomas including 24 serous (OSPC), 15 clear-cell (CC), 24 endometrioid (EAC) and 7 poorly differentiated tumours, and 14 normal human ovarian surface epithelial (HOSE) control cell lines using the Human HG-U133 Plus 2.0 chip (Affymetrix). Quantitative real-time PCR and immunohistochemistry staining techniques were used to validate microarray data at RNA and protein levels for SCGB2A1. Full-length human-recombinant SCGB2A1 was used to pulse monocyte-derived dendritic cells (DCs) to stimulate autologous SCGB2A1-specific cytotoxic T-lymphocyte (CTL) responses against chemo-naive and chemo-resistant autologous ovarian tumours.Results:Gene expression profiling identified SCGB2A1 as a top differentially expressed gene in all histological ovarian cancer types tested. The CD8+ CTL populations generated against SCGB2A1 were able to consistently induce lysis of autologous primary (chemo-naive) and metastatic/recurrent (chemo-resistant) target tumour cells expressing SCGB2A1, whereas autologous HLA-identical noncancerous cells were not lysed. Cytotoxicity against autologous tumour cells was significantly inhibited by anti-HLA-class I (W6/32) monoclonal antibody. Intracellular cytokine expression measured by flow cytometry showed a striking type 1 cytokine profile (i.e., high IFN-γ secretion) in SCGB2A1-specific CTLs.Conclusion:SCGB2A1 is a top differentially expressed gene in all major histological types of ovarian cancers and may represent a novel and attractive target for the immunotherapy of patients harbouring recurrent disease resistant to chemotherapy.
Background:We evaluated the expression of CD46, CD55 and CD59 membrane-bound complement-regulatory proteins (mCRPs) in primary uterine serous carcinoma (USC) and the ability of small interfering RNA (siRNA) against these mCRPs to sensitise USC to complement-dependent cytotoxicity (CDC) and antibody (trastuzumab)-dependent cellular cytotoxicity (ADCC) in vitro.Methods:Membrane-bound complement-regulatory proteins expression was evaluated using real-time PCR (RT–PCR) and flow cytometry, whereas Her2/neu expression and c-erbB2 gene amplification were assessed using immunohistochemistry, flow cytometry and fluorescent in-situ hybridisation. The biological effect of siRNA-mediated knockdown of mCRPs on HER2/neu-overexpressing USC cell lines was evaluated in CDC and ADCC 4-h chromium-release assays.Results:High expression of mCRPs was found in USC cell lines when compared with normal endometrial cells (P<0.05). RT–PCR and FACS analyses demonstrated that anti-mCRP siRNAs were effective in reducing CD46, CD55 and CD59 expression on USC (P<0.05). Baseline complement-dependent cytotoxicity (CDC) against USC cell lines was low (mean±s.e.m.=6.8±0.9%) but significantly increased upon CD55 and CD59 knockdown (11.6±0.8% and 10.7±0.9%, respectively, P<0.05). Importantly, in the absence of complement, both CD55 and CD59, but not CD46, knockdowns significantly augmented ADCC against USC overexpressing Her2/neu.Conclusion:Uterine serous carcinoma express high levels of the mCRPs CD46, CD55 and CD59. Small interfering RNA inhibition of CD55 and CD59, but not CD46, sensitises USC to both CDC and ADCC in vitro, and if specifically targeted to tumour cells, may significantly increase trastuzumab-mediated therapeutic effect in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.