Podolsky and Pauling (Phys. Rev. 34, 109 -116 (1929)) were the first ones to derive an explicit expression for the Fourier transform of a bound-state hydrogen eigenfunction. Yükçü and Yükçü, who were apparently unaware of the work of Podolsky and Pauling or of the numerous other earlier references on this Fourier transform, proceeded differently. They expressed a generalized Laguerre polynomial as a finite sum of powers, or equivalently, they expressed a bound-state hydrogen eigenfunction as a finite sum of Slater-type functions. This approach looks very simple, but it leads to comparatively complicated expressions that cannot match the simplicity of the classic result obtained by Podolsky and Pauling. It is, however, possible to reproduce not only the Podolsky and Pauling formula for the bound-state hydrogen eigenfunction, but to obtain results of similar quality also for the Fourier transforms of other, closely related functions such as Sturmians, Lambda functions or Guseinov's functions by expanding generalized Laguerre polynomials in terms of so-called reduced Bessel functions.
In this study, the beta function that is encountered in computational mathematics and physics is analyzed. The correct evaluation of this function also affects the accuracy of other mathematical functions in quantum mechanical calculations. Especially in recent years, there is an interest in studies related to the beta function for zero and negative p and q integers. This study, considering the neutrix limits of the beta function, presents new relations for the numerical computation of the beta function, especially for negative integers p and q. In addition, taking into account the definition of the beta function for positive p and q integer values, an algorithm is created to calculate the function for all integer values. Finally, numerical results obtained with the help of our new recurrence relations and algorithm are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.