The NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) program was established to better quantify the pathways of the biological carbon pump in order to gain a more comprehensive understanding of global carbon export efficiency. The summer 2018 field campaign in the vicinity of Ocean Station Papa (Station P; 50°N, 145°W) in the Northeast Pacific Ocean yielded evidence of low phytoplankton biomass and primary productivity dominated by small cells (<5 µm) that are reliant on recycled nutrients. Using combined 13C/15N stable isotope incubations, we calculated an average depth-integrated dissolved inorganic carbon uptake (net primary production) rate of 23.1 mmol C m–2 d–1 throughout the euphotic zone with small cells contributing 88.9% of the total daily DIC uptake. Average depth-integrated NO3– uptake rates were 1.5 mmol N m–2 d–1 with small cells contributing 73.4% of the total daily NO3– uptake. Estimates of new and regenerated production fluctuated, with small cells continuing to dominate both forms of production. The daily mixed-layer f-ratio ranged from 0.17 to 0.38 for the whole community, consistent with previous studies, which indicates a predominance of regenerated production in this region, with small and large cells (≥5 μm) having average f-ratios of 0.28 and 0.82, respectively. Peak phytoplankton biomass, total primary productivity and new production occurred between Julian Days 238 and 242 of our observation period, driven primarily by an increase in carbon and nitrate assimilation rates without apparent substantial shifts in the phytoplankton size-class structure. Our findings demonstrate the importance of small cells in performing the majority of net primary production and new production and the modest productivity fluctuations that occur in this iron-limited region of the Northeast Pacific Ocean, driven by ephemeral increases in new production, which could have significant ramifications for carbon export over broad timescales.
Diatoms are major contributors to marine primary productivity and carbon export due to their rapid growth in high-nutrient environments and their heavy silica ballast. Their contributions are highly modified in high-nutrient low-chlorophyll regions due to the decoupling of upper-ocean silicon and carbon cycling caused by low iron (Fe). The Si cycle and the role of diatoms in the biological carbon pump was examined at Ocean Station Papa (OSP) in the HNLC region of the northeastern subarctic Pacific during the NASA EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field study. Sampling occurred during the annual minimum in surface silicic acid (Si(OH)4) concentration. Biogenic silica (bSi) concentrations were low, being in the tens of nanomolar range, despite high Si(OH)4 concentrations of about 15 μM. On average, the >5.0-µm particle size fraction dominated Si dynamics, accounting for 65% of bSi stocks and 81% of Si uptake compared to the small fraction (0.6–5.0 μm). Limitation of Si uptake was detected in the small, but not the large, size fraction. Growth rate in small diatoms was limited by Fe, while their Si uptake was restricted by Si(OH)4 concentration, whereas larger diatoms were only growth-limited by Fe. About a third of bSi production was exported out of the upper 100 m. The contribution of diatoms to carbon export (9–13%) was about twice their contribution to primary productivity (3–7%). The combination of low bSi production, low diatom primary productivity and high bSi export efficiency at OSP was more similar to the dynamics in the subtropical gyres than to other high-nutrient low-chlorophyll regions.
Phytoplankton are the base of nearly all marine food webs and mediate the interactions of biotic and abiotic components in marine systems. Understanding the spatial and temporal changes in phytoplankton growth requires comprehensive biological, physical, and chemical information. Long-term datasets are an invaluable tool to study these changes, but they are rare and often include only a small set of measurements. Here, we present biological, physical and chemical oceanographic data measured periodically between March 2010 and November 2017 from the euphotic zone of Saanich Inlet, a temperate fjord on the west coast of British Columbia, Canada. The dataset includes measurements of dissolved macronutrients, total and size-fractionated chlorophyll-a, particulate carbon, nitrogen and biogenic silica, and carbon and nitrate uptake rates. This collection describes phytoplankton dynamics and the distribution of biologically-available macronutrients over time in the upper water column of Saanich Inlet. We establish a baseline for future investigations in Saanich Inlet and provide a data collection protocol that can be applied to similar productive coastal regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.