The research investigated the effect of silver nanoparticles on the corrosion behaviour of Mild steel and 316 Austenitic stainless steel in 0.5M H2SO4 using the potentiodynamic polarization method. The nanoparticles were synthesized from the sweet potato (Ipomoea batatas) plant extracts using Silver Nitrate (AgNO3) and were characterized using Atomic Adsorption Spectroscopy, Fourier Transform Infrared Spectroscopy and the Ultraviolet Visible Spectroscopy Technique. The AAS results showed that the plant extract is eco-friendly as it does not contain heavy metals. The FTIR results showed the different functional groups present in the extracts obtained from the different parts of the plant to be Alcohol O-H, Nitrile C≡N, Alkyne C≡C, Alkene C=C and Benzene Ring C=C. The UV-Vis results showed the presence of phenolic compound which aided inhibition. The results from the potentiodynamic polarization showed that the nanoparticle obtained from the leaf has the highest corrosion inhibition efficiency and the corrosion inhibition efficiency increases as the concentration of inhibitors increases.
The research investigated the effect of silver nanoparticles on the corrosion behaviour of Mild steel and 316 Austenitic stainless steel in 0.5M H2SO4 using the potentiodynamic polarization method. The nanoparticles were synthesized from the sweet potato (Ipomoea batatas) plant extracts using Silver Nitrate (AgNO3) and were characterized using Atomic Adsorption Spectroscopy, Fourier Transform Infrared Spectroscopy and the Ultraviolet Visible Spectroscopy Technique. The AAS results showed that the plant extract is eco-friendly as it does not contain heavy metals. The FTIR results showed the different functional groups present in the extracts obtained from the different parts of the plant to be Alcohol O-H, Nitrile C?N, Alkyne C?C, Alkene C=C and Benzene Ring C=C. The UV-Vis results showed the presence of phenolic compound which aided inhibition. The results from the potentiodynamic polarization showed that the nanoparticle obtained from the leaf has the highest corrosion inhibition efficiency and the corrosion inhibition efficiency increases as the concentration of inhibitors increases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.