Bacteria emit a wealth of volatile organic compounds. Gas chromatography coupled to mass spectrometry analysis of five Serratia strains revealed ketones, dimethyl di- and trisulfide and 2-phenylethanol commonly released in this genus. The polymethylated bicyclic hydrocarbon sodorifen was uniquely released by the rhizobacterium Serratia plymuthica 4Rx13. Of 10 Serratia strains, only S. plymuthica isolates originating from plants grown on fields near Rostock (Germany) released this new and unusual compound. Since the biosynthetic pathway of sodorifen was unknown, the genome sequence of S. plymuthica 4Rx13 was determined and annotated. Genome comparison of S. plymuthica 4Rx13 with sodorifen non-producing Serratia species highlighted 246 unique candidate open reading frames.
Soil metagenomes represent an unlimited resource for the discovery of novel biocatalysts from soil microorganisms. Three large-inserts metagenomic DNA libraries were constructed from different grassland soil samples and screened for genes conferring cellulase or xylanase activity. Function-driven screening identified a novel cellulase-encoding gene (cel01) and two xylanase-encoding genes (xyn01 and xyn02). From sequence and protein domain analyses, Cel01 (831 amino acids) belongs to glycoside hydrolase family 9 whereas Xyn01 (170 amino acids) and Xyn02 (255 amino acids) are members of glycoside hydrolase family 11. Cel01 harbors a family 9 carbohydrate-binding module, previously found only in xylanases. Both Xyn01 and Xyn02 were most active at 60°C with high activities from 4 to 10 and optimal at pH 7 (Xyn01) and pH 6 (Xyn02). The cellulase gene, cel01, was expressed in E. coli BL21 and the recombinant enzyme (91.9 kDa) was purified. Cel01 exhibited high activity with soluble cellulose substrates containing β-1,4-linkages. Activity with microcrystalline cellulose was not detected. These data, together with the analysis of the degradation profiles of carboxymethyl cellulose and barley glucan indicated that Cel01 is an endo 1,4-β-glucanase. Cel01 showed optimal activity at 50°C and pH 7 being highly active from pH range 5 to 9 and possesses remarkable halotolerance.Electronic supplementary materialThe online version of this article (doi:10.1007/s10529-011-0830-2) contains supplementary material, which is available to authorized users.
Retroviral proteins, including those from the human immunodeficiency virus (HIV), are synthesized as polyprotein precursors that require proteolytic cleavage to yield the mature viral proteins. A 99-residue polypeptide, encoded by the 5' end of the pol gene, has been proposed as the processing protease of HIV. The chemical synthesis of the 99-residue peptide was carried out by the solid-phase method, and the isolated product was found to exhibit specific proteolytic activity upon folding under reducing conditions. Upon size-exclusion chromatography, enzymatic activity was eluted at a point consistent with a dimeric molecular size. Specificity was demonstrated by the cleavage of the natural substrate HIV gag p55 into gag p24 and gag p17, as well as cleavage of small peptide substrates representing processing sites of HIV fusion proteins. The proteolytic action of the synthetic product could be inhibited by pepstatin, an aspartic protease inhibitor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.