Bial, Eisai, GlaxoSmithKline, Janssen-Cilag, Novartis, Pfizer, Sanofi-Aventis, UCB, the Netherlands Epilepsy Foundation, and Stockholm County Council.
IMPORTANCEWomen with epilepsy frequently need antiseizure medication (ASM) to prevent seizures in pregnancy. Risk of neurodevelopmental disorders after prenatal exposure to AMSs is uncertain.OBJECTIVE To determine whether children exposed prenatally to ASMs in monotherapy and duotherapy have increased risk of neurodevelopmental disorders. DESIGN, SETTING, AND PARTICIPANTSThe Nordic register-based study of antiepileptic drugs in pregnancy (SCAN-AED) is a population-based cohort study using health register and social register data from Denmark, Finland, Iceland, Norway, and Sweden (1996-2017; analysis performed February 2022). From 4 702 774 alive-born children with available mother-child identities and maternal prescription data, this study included 4 494 926 participants. Children from a multiple pregnancy or with chromosomal disorders or uncertain pregnancy length were excluded (n = 207 848).EXPOSURES Prenatal exposure to ASM determined from maternal prescription fills between last menstrual period and birth. MAIN OUTCOMES AND MEASURESWe estimated cumulative incidence at age 8 years in exposed and unexposed children. Cox regression adjusted for potential confounders yielded adjusted hazard ratios (aHRs) with 95% CIs for autism spectrum disorder (ASD), intellectual disability (ID), or any neurodevelopmental disorder (ASD and/or ID).RESULTS A total of 4 494 926 children were included; 2 306 993 (51.3%) were male, and the median (IQR) age at end of follow-up was 8 (4.0-12.1) years. Among 21 634 unexposed children of mothers with epilepsy, 1.5% had a diagnosis of ASD and 0.8% (numerators were not available because of personal data regulations in Denmark) of ID by age 8 years. In same-aged children of mothers with epilepsy exposed to topiramate and valproate monotherapy, 4.3% and 2.7%, respectively, had ASD, and 3.1% and 2.4% had ID. The aHRs for ASD and ID after topiramate exposure were 2.8 (95% CI, 1.4-5.7) and 3.5 (95% CI, 1.4-8.6), respectively, and after valproate exposure were 2.4 (95% CI, 1.7-3.3) and 2.5 (95% CI, 1.7-3.7). The aHRs were elevated with higher ASM doses compared with children from the general population. The duotherapies levetiracetam with carbamazepine and lamotrigine with topiramate were associated with increased risks of neurodevelopmental disorders in children of women with epilepsy: levetiracetam with carbamazepine: 8-year cumulative incidence, 5.7%; aHR, 3.5; 95% CI, 1.5-8.2; lamotrigine with topiramate: 8-year cumulative incidence, 7.5%; aHR, 2.4; 95% CI, 1.1-4.9. No increased risk was associated with levetiracetam with lamotrigine (8-year cumulative incidence, 1.6%; aHR, 0.9; 95% CI, 0.3-2.5). No consistently increased risks were observed for neurodevelopmental disorders after prenatal exposure to monotherapy with lamotrigine, levetiracetam, carbamazepin, oxcarbazepine, gapapentin, pregabalin, clonazepam, or phenobarbital. CONCLUSIONS AND RELEVANCEIn this cohort study, prenatal exposure to topiramate, valproate, and several duotherapies were associated with increased risks of neurodevel...
The association of temporal lobe epilepsy with depression and other neuropsychiatric disorders has been known since the early beginnings of neurology and psychiatry. However, only recently have in vivo and ex vivo techniques such as Positron Emission Tomography, Magnetic Resonance Imaging and Magnetic Resonance Spectroscopy in combination with refined animal models and behavioral tests made it possible to identify an emerging pattern of common pathophysiological mechanisms. We now have growing evidence that in both disorders altered interaction of serotonergic and noradrenergic neurons with glutamatergic systems is associated with abnormal neuronal circuits and hyperexcitability. Neuronal hyperexcitability can possibly evoke seizure activity as well as disturbed emotions. Moreover, decreased synaptic levels of neurotransmitters and high glucocorticoid levels influence intracellular signaling pathways such as cAMP, causing disturbances of brain-derived and other neurotrophic factors.These may be associated with hippocampal atrophy seen on Magnetic Resonance Imaging and memory impairment as well as altered fear processing and transient hypertrophy of the amygdala. Positron Emission Tomography studies additionally suggest hypometabolism of glucose in temporal and frontal lobes. Last, but not least, in temporal lobe epilepsy and depression astrocytes play a role that reaches far beyond their involvement in hippocampal sclerosis and ultimately, therapeutic regulation of glial-neuronal interactions may be a target for future research. All these mechanisms are strongly intertwined and probably bidirectional such that the structural and functional alterations from one disease increase the risk for developing the other. This review provides an integrative update of the most relevant experimental and clinical data on temporal lobe epilepsy and its association with depression.
A better understanding is needed of how glutamate metabolism is affected in mesial temporal lobe epilepsy (MTLE). Here we investigated glial-neuronal metabolism in the chronic phase of the kainate (KA) model of MTLE. Thirteen weeks following systemic KA, rats were injected i.p. with [1-(13)C]glucose. Brain extracts from hippocampal formation, entorhinal cortex, and neocortex, were analyzed by (13)C and (1)H magnetic resonance spectroscopy to quantify (13)C labeling and concentrations of metabolites, respectively. The amount and (13)C labeling of glutamate were reduced in the hippocampal formation and entorhinal cortex of epileptic rats. Together with the decreased concentration of NAA, these results indicate neuronal loss. Additionally, mitochondrial dysfunction was detected in surviving glutamatergic neurons in the hippocampal formation. In entorhinal cortex glutamine labeling and concentration were unchanged despite the reduced glutamate content and label, possibly due to decreased oxidative metabolism and conserved flux of glutamate through glutamine synthetase in astrocytes. This mechanism was not operative in the hippocampal formation, where glutamine labeling was decreased. In neocortex labeling and concentration of GABA were increased in epileptic rats, possibly representing a compensatory mechanism. The changes in the hippocampus might be of pathophysiological importance and merit further studies aiming at resolving metabolic causes and consequences of MTLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.