Fibroblast growth factor 23 (FGF23) plays a crucial role in renal phosphate regulation, exemplified by the causal role of PHEX and DMP1 mutations in X-linked hypophosphatemic rickets and autosomal recessive rickets type 1, respectively. Using whole exome sequencing we identified compound heterozygous mutations in family with sequence similarity 20, member C (FAM20C) in two siblings referred for hypophosphatemia and severe dental demineralization disease. FAM20C mutations were not found in other undiagnosed probands of a national Norwegian population of familial hypophosphatemia. Our results demonstrate that mutations in FAM20C provide a putative new mechanism in human subjects leading to dysregulated FGF23 levels, hypophosphatemia, hyperphosphaturia, dental anomalies, intracerebral calcifications and osteosclerosis of the long bones in the absence of rickets. ß
ObjectiveHereditary hypophosphatemias (HH) are rare monogenic conditions characterized by decreased renal tubular phosphate reabsorption. The aim of this study was to explore the prevalence, genotypes, phenotypic spectrum, treatment response, and complications of treatment in the Norwegian population of children with HH.DesignRetrospective national cohort study.MethodsSanger sequencing and multiplex ligand-dependent probe amplification analysis of PHEX and Sanger sequencing of FGF23, DMP1, ENPP1KL, and FAM20C were performed to assess genotype in patients with HH with or without rickets in all pediatric hospital departments across Norway. Patients with hypercalcuria were screened for SLC34A3 mutations. In one family, exome sequencing was performed. Information from the patients' medical records was collected for the evaluation of phenotype.ResultsTwety-eight patients with HH (18 females and ten males) from 19 different families were identified. X-linked dominant hypophosphatemic rickets (XLHR) was confirmed in 21 children from 13 families. The total number of inhabitants in Norway aged 18 or below by 1st January 2010 was 1 109 156, giving an XLHR prevalence of ∼1 in 60 000 Norwegian children. FAM20C mutations were found in two brothers and SLC34A3 mutations in one patient. In XLHR, growth was compromised in spite of treatment with oral phosphate and active vitamin D compounds, with males tending to be more affected than females. Nephrocalcinosis tended to be slightly more common in patients starting treatment before 1 year of age, and was associated with higher average treatment doses of phosphate. However, none of these differences reached statistical significance.ConclusionsWe present the first national cohort of HH in children. The prevalence of XLHR seems to be lower in Norwegian children than reported earlier.
PINI and LBM are associated with increased relative risk for having CVD and could be used routinely to examine the degree of severity of malnutrition inflammation complex syndrome.
BackgroundHyperphosphatemic Familial Tumoral Calcinosis (HFTC) and Hyperphosphatemic Hyperostosis Syndrome (HHS) are associated with autosomal recessive mutations in three different genes, FGF23, GALNT3 and KL, leading to reduced levels of fibroblast growth factor 23 (FGF23) and subsequent clinical effects.ResultsWe describe a consanguineous family with two affected siblings with HFTC and HHS caused by a novel homozygous G-to T substitution in exon 3 of GALNT3 (c.767 G > T; p.Gly256Val), demonstrating great phenotypic variation and long asymptomatic intervals. Calcific tumors appeared at 14 years of age in the male, and the female displayed episodic diaphysitis from age 9 years. Symptoms of eye involvement were present in both from childhood, and progressed into band keratopathy in the female. Abnormal dental roots and tooth loss, as well as myalgia were present in both from their mid-twenties, while the female also had calcifications in the placenta, the iliac vessels and thyroid cartilage. New calcific tumors appeared more than 20 years after the initial episodes, delaying diagnosis and treatment until the ages of 37 and 50 years, respectively. Both siblings had elevated serum phosphate levels, inappropriately elevated tubular maximum phosphate reabsorption per unit glomerular filtration rate (TmP/GFR), reduced levels of intact FGF23 and increased levels of c-terminal FGF23. Review of all 54 previously published cases of GALNT3, FGF23, and KL associated HFTC and HHS demonstrated that more subjects than previously recognized have a combined phenotype.ConclusionWe have described HFTC and HHS in a consanguineous Caucasian family with a novel GALNT3 mutation, demonstrating new phenotypic features and significant variability in the natural course of the disease. A review of the literature, show that more subjects than previously recognized have a combined phenotype of HFTC and HHS. HHS and HFTC are two distinct phenotypes in a spectrum of GALNT3 mutation related calcification disorders, where the additional factors determining the phenotypic expression, are yet to be clarified.Electronic supplementary materialThe online version of this article (doi:10.1186/s12863-014-0098-3) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.