For more than five decades, research has been conducted at Ny-Ålesund, in Svalbard, Norway, to understand the structure and functioning of High-Arctic ecosystems and the profound impacts on them of environmental change. Terrestrial, freshwater, glacial and marine ecosystems are accessible year-round from Ny-Ålesund, providing unique opportunities for interdisciplinary observational and experimental studies along physical, chemical, hydrological and climatic gradients. Here, we synthesize terrestrial and freshwater research at Ny-Ålesund and review current knowledge of biodiversity patterns, species population dynamics and interactions, ecosystem processes, biogeochemical cycles and anthropogenic impacts. There is now strong evidence of past and ongoing biotic changes caused by climate change, including negative effects on populations of many taxa and impacts of rain-on-snow events across multiple trophic levels. While species-level characteristics and responses are well understood for macro-organisms, major knowledge gaps exist for microbes, invertebrates and ecosystem-level processes. In order to fill current knowledge gaps, we recommend (1) maintaining monitoring efforts, while establishing a long-term ecosystem-based monitoring programme; (2) gaining a mechanistic understanding of environmental change impacts on processes and linkages in food webs; (3) identifying trophic interactions and cascades across ecosystems; and (4) integrating long-term data on microbial, invertebrate and freshwater communities, along with measurements of carbon and nutrient fluxes among soils, atmosphere, freshwaters and the marine environment. The synthesis here shows that the Ny-Ålesund study system has the characteristics needed to fill these gaps in knowledge, thereby enhancing our understanding of High-Arctic ecosystems and their responses to environmental variability and change.
Collembola (springtails) are important members of soil communities worldwide by contributing to degradation of organic matter. In nature, Collembola might be exposed to the neonicotinoid insecticide imidacloprid, which is fairly persistent in soil. We exposed the widespread Hypogastrura viatica to imidacloprid through soil or food, and monitored the animals during exposure and a post-exposure period. We recorded effects on life-history traits affecting individual fitness; that is, mortality, behavioral activity, several reproduction traits, and moulting frequency.Exposure through soil led to a concentration-dependent mortality, while the mortality from dietary exposure possibly reflected reduced feeding activity. The body burden of This article is protected by copyright. All rights reserved. Accepted Articleimidacloprid in the Collembola did not differ between treatments. We found no sign of recovery in behavioral activity following exposure in neither experiment. The egg production of H. viatica was not significantly affected by imidacloprid at 0.01 mg/kg dry soil, but showed a tendency to reduce number of eggs per batch and reduced hatching success. At higher concentrations, the reproduction was close to, or completely stopped. The moulting frequency decreased during exposure, while in the post-exposure period, we saw milder effects in the highest concentrations, suggesting elimination through moulting or reduced toxic response due to reduced feeding activity. Overall, H. viatica was more sensitive to imidacloprid than previously studied Collembola, which highlights the importance of considering species sensitivities when risk assessing soil environments.
Arctic-breeding seabirds contain high levels of many anthropogenic contaminants, which they deposit through guano to the tundra near their colonies. Nutrient-rich soil in vicinity to seabird colonies are favorable habitats for soil invertebrates, such as springtails (Collembola), which may result in exposure to seabird-derived contaminants. We quantified a wide range of lipid-soluble and proteinassociated environmental contaminants in two springtail species (Megaphorura arctica and Hypogastrura viatica) and their respective habitats (soil/moss) collected underneath seabird cliffs. Although springtails are commonly used in laboratory toxicity tests, this is the first study to measure concentrations of persistent organic pollutants (POPs) and mercury (Hg) in springtails from the field, and to study biotransportation of contaminants by seabirds to soil fauna. We categorized the sites a priori as of low, medium, or high seabird influence, based on the seabird abundance and species composition. This ranking was reflected in increasing δ 15 N values in soil/ moss and springtails with increasing seabird influence. We found clear indications of seabirds impacting the terrestrial soil environments with organic contaminants, and that concentrations were higher in soil and moss close to the bird cliff, compared to farther away. However, we did not find a relationship between contaminant concentration in springtails and the concentrations in soil/moss, or with level of seabird influence. Our study indicates a low uptake of contaminants in the soil fauna, despite seabird-derived contamination of their habitat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.