IntroductionBoiling ethanol extraction is a frequently used method for metabolomics studies of biological samples. However, the stability of several central carbon metabolites, including nucleotide triphosphates, and the influence of the cellular matrix on their degradation have not been addressed.ObjectivesTo study how a complex cellular matrix extracted from yeast (Saccharomyces cerevisiae) may affect the degradation profiles of nucleotide triphosphates extracted under boiling ethanol conditions.MethodsWe present a double-labelling LC–MS approach with a 13C-labeled yeast cellular extract as complex surrogate matrix, and 13C15N-labeled nucleotides as internal standards, to study the effect of the yeast matrix on the degradation of nucleotide triphosphates.ResultsWhile nucleotide triphosphates were degraded to the corresponding diphosphates in pure solutions, degradation was prevented in the presence of the yeast matrix under typical boiling ethanol extraction conditions.ConclusionsExtraction of biological samples under boiling ethanol extraction conditions that rapidly inactivate enzyme activity are suitable for labile central energy metabolites such as nucleotide triphosphates due to the stabilizing effect of the yeast matrix. The basis of this phenomenon requires further study.Graphical abstract Electronic supplementary materialThe online version of this article (doi:10.1007/s11306-016-1140-4) contains supplementary material, which is available to authorized users.
Bacteria regulate cell physiology in response to extra- and intracellular cues. Recent work showed that metabolic fluxes are reported by specific metabolites, whose concentrations correlate with flux through the respective metabolic pathway. An example of a flux-signaling metabolite is fructose-1,6-bisphosphate (FBP). In turn, FBP was proposed to allosterically regulate master regulators of carbon metabolism, Cra in Escherichia coli and CggR in Bacillus subtilis. However, a number of questions on the FBP-mediated regulation of these transcription factors is still open. Here, using thermal shift assays and microscale thermophoresis we demonstrate that FBP does not bind Cra, even at millimolar physiological concentration, and with electrophoretic mobility shift assays we also did not find FBP-mediated impairment of Cra's affinity for its operator site, while fructose-1-phosphate does. Furthermore, we show for the first time that FBP binds CggR within the millimolar physiological concentration range of the metabolite, and decreases DNA-binding activity of this transcription factor. Molecular docking experiments only identified a single FBP binding site CggR. Our results provide the long thought after clarity with regards to regulation of Cra activity in E. coli and reveals that E. coli and B. subtilis use distinct cellular mechanism to transduce glycolytic flux signals into transcriptional regulation.
Metabolic heterogeneity, the occurrence of different metabolic phenotypes among cells, represents a key challenge in health and biotechnology. To unravel its molecular basis, tools probing metabolism of single cells are needed. While RNA devices harbor huge potential for the development of such tools, until today, it is challenging to create in vivo-functional sensors for any given metabolite. Here, we developed from scratch an RNA-based sensor for fructose-1,6-bisphosphate (FBP), a doubly phosphorylated intermediate of glycolysis. Starting from in vitro selection of an RNA aptamer and its structural analyses, we developed libraries of RNA-based regulatory devices with this aptamer and the hammerhead ribozyme as an actuator. Through FACS-seq-based high-throughput screening in yeast, we identified in vivo-functional FBP-sensing devices that generate fluorescent readout dependent on intracellular FBP concentration. As FBP reports the flux through glycolysis, the developed RNA device can be used to sense the glycolytic rate in single cells, offering unprecedented possibilities to investigate the causes of metabolic heterogeneity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.