Arid ecosystems are characterized by high spatial heterogeneity, and the variation among vegetation patches is a clear example. Soil biotic and abiotic factors associated with these patches have also been well documented as highly heterogeneous in space. Given the low vegetation cover and little precipitation in arid ecosystems, soil microorganisms are the main drivers of nutrient cycling. Nonetheless, little is known about the spatial distribution of microorganisms and the relationship that their diversity holds with nutrients and other physicochemical gradients in arid soils. In this study, we evaluated the spatial variability of soil microbial diversity and chemical parameters (nutrients and ion content) at local scale (meters) occurring in a gypsum-based desert soil, to gain knowledge on what soil abiotic factors control the distribution of microbes in arid ecosystems. We analyzed 32 soil samples within a 64 m2 plot and: (a) characterized microbial diversity using T-RFLPs of the bacterial 16S rRNA gene, (b) determined soil chemical parameters, and (c) identified relationships between microbial diversity and chemical properties. Overall, we found a strong correlation between microbial composition heterogeneity and spatial variation of cations (Ca2, K+) and anions (HCO, Cl−, SO) content in this small plot. Our results could be attributable to spatial differences of soil saline content, favoring the patchy emergence of salt and soil microbial communities.
The aim of this study was to investigate how long‐term Mancozeb application to banana plantations affects the occurrence of pollutants in drainage‐channel sediment and water under tropical conditions. We estimated the possible accumulation of Mancozeb's principal metabolite ethylenethiourea (ETU), as well as manganese (Mn) and zinc (Zn) as components in channel sediment and water. We took samples during the tropical‐rainfall season and the low‐rainfall season. For sediment samples, we determined the contents of ETU, Mn, and Zn. For water samples, we determined the concentration of ETU. Additionally, we took water samples from a runnel that is the receiving body of hydraulic flow from the system. In both seasons, ETU in the sediment was near the detection limit (0.01 mg kg–1) and did not show any accumulation. However, Mn in sediment at all sampling sites exceeded the threshold values for aquatic life of 630 mg kg–1 with values between 635 and 7256 mg kg–1. The Zn concentrations in sediment varied from 87 to 190 mg kg–1 and exceeded the threshold values for aquatic life of 98 mg kg–1 at several sites. Furthermore, we determined an accumulation of these heavy metals in the sediments of the banana‐planted zone in comparison with sediments in pasture reference sites. In contrast to the low concentration of ETU in sediment, its concentration in drainage and runnel water (5.9–13.8 μg L–1) exceeded the EU threshold value for drinking water (0.1 μg L–1) by up to nearly 140 times. However, the threshold value for aquatic life was not exceeded. We conclude that long‐term Mancozeb application does lead to a severe accumulation of Mn in sediments and of ETU in surface water. New strategies should be used to control black Sigatoka, including integrated methods of pest control so that long‐term negative effects on the environment can be avoided.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.