The identification of low-level thermal fronts is particularly challenging in high-resolution model fields over complex terrain. Firstly, direct model output often contains numerical noise which spuriously influences the highfrequency variability of thermal parameters. Secondly, the boundary layer interferes via convection and consequently leaves its thermal marks on low levels. Here, an automated objective method for the detection of frontal lines is introduced which is designed to be insusceptible to consequences of small grid spacings. To this end, existing algorithms are readopted and combined in a novel way. The overall technique subdivides into a basic detection of fronts and a supplemental division into local fronts and synoptic fronts. The fundamental parts of the detection are: (1) a smoothing of the initial fields, (2) a definition of the frontal strength, and, (3) a localisation with the thermal front parameter. The local fronts are identified by means of a classification of open and closed thermal contours. The resulting data comprise the spatial outline of the frontal structures in a binary field as well as their type and movement. The novel methodology is applied to a 3 year high-resolution reanalysis over central Europe computed with the COSMO model using a grid spacing of 7 km. Grid-point based climatologies are derived for the Alpine region. Frequencies of occurrence and characteristics of motion are analysed for different frontal types. The novel climatology also provides quantitative evidence of dynamical properties such as the retardation of cold fronts ahead of mountains and the dissolution of warm fronts over mountains.
International audienceThis paper presents an overview of the state of the art on the research on Dynamic Line Rating forecasting. It is directed at researchers and decision-makers in the renewable energy and smart grids domain, and in particular at members of both the power system and meteorological community. Its aim is to explain the details of one aspect of the complex interconnection between the environment and power systems. The ampacity of a conductor is defined as the maximum constant current which will meet the design, security and safety criteria of a particular line on which the conductor is used. Dynamic Line Rating (DLR) is a technology used to dynamically increase the ampacity of electric overhead transmission lines. It is based on the observation that the ampacity of an overhead line is determined by its ability to dissipate into the environment the heat produced by Joule effect. This in turn is dependent on environmental conditions such as the value of ambient temperature, solar radiation, and wind speed and direction. Currently, conservative static seasonal estimations of meteorological values are used to determine ampacity. In a DLR framework, the ampacity is estimated in real time or quasi-real time using sensors on the line that measure conductor temperature, tension, sag or environmental parameters such as wind speed and air temperature. Because of the conservative assumptions used to calculate static seasonal ampacity limits and the variability of weather parameters, DLRs are considerably higher than static seasonal ratings. The latent transmission capacity made available by DLRs means the operation time of equipment can be extended, especially in the current power system scenario, where power injections from Intermittent Renewable Sources (IRS) put stress on the existing infrastructure. DLR can represent a solution for accommodating higher renewable production whilst minimizing or postponing network reinforcements. On the other hand, the variability of DLR with respect to static seasonal ratings makes it particularly difficult to exploit, which explains the slow take-up rate of this technology. In order to facilitate the integration of DLR into power system operations, research has been launched into DLR forecasting, following a similar avenue to IRS production forecasting, i.e. based on a mix of statistical methods and meteorological forecasts. The development of reliable DLR forecasts will no doubt be seen as a necessary step for integrating DLR into power system management and reaping the expected benefits
Abstract. Simulating surface wind over complex terrain is a challenge in regional climate modelling. Therefore, this study aims at identifying a set-up of the Weather Research and Forecasting Model (WRF) model that minimises systematic errors of surface winds in hindcast simulations. Major factors of the model configuration are tested to find a suitable set-up: the horizontal resolution, the planetary boundary layer (PBL) parameterisation scheme and the way the WRF is nested to the driving data set. Hence, a number of sensitivity simulations at a spatial resolution of 2 km are carried out and compared to observations. Given the importance of wind storms, the analysis is based on case studies of 24 historical wind storms that caused great economic damage in Switzerland. Each of these events is downscaled using eight different model set-ups, but sharing the same driving data set. The results show that the lack of representation of the unresolved topography leads to a general overestimation of wind speed in WRF. However, this bias can be substantially reduced by using a PBL scheme that explicitly considers the effects of non-resolved topography, which also improves the spatial structure of wind speed over Switzerland. The wind direction, although generally well reproduced, is not very sensitive to the PBL scheme. Further sensitivity tests include four types of nesting methods: nesting only at the boundaries of the outermost domain, analysis nudging, spectral nudging, and the so-called re-forecast method, where the simulation is frequently restarted. These simulations show that restricting the freedom of the model to develop large-scale disturbances slightly increases the temporal agreement with the observations, at the same time that it further reduces the overestimation of wind speed, especially for maximum wind peaks.The model performance is also evaluated in the outermost domains, where the resolution is coarser. The results demonstrate the important role of horizontal resolution, where the step from 6 to 2 km significantly improves model performance. In summary, the combination of a grid size of 2 km, the non-local PBL scheme modified to explicitly account for non-resolved orography, as well as analysis or spectral nudging, is a superior combination when dynamical downscaling is aimed at reproducing real wind fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.