The structure of the human gut microbial community is determined by host genetics and environmental factors, where alterations in its structure have been associated with the onset of different diseases. Establishing a defined human gut microbial community within inbred rodent models provides a means to study microbial-related pathologies, however, an in-depth comparison of the established human gut microbiota in the different models is lacking. We compared the efficiency of establishing the bacterial component of a defined human microbial community within germ-free (GF) rats, GF mice, and antibiotic-treated specific pathogen-free mice. Remarkable differences were observed between the different rodent models. While the majority of abundant human-donor bacterial phylotypes were established in the GF rats, only a subset was present in the GF mice. Despite the fact that members of the phylum Bacteriodetes were well established in all rodent models, mice enriched for phylotypes related to species of Bacteroides. In contrary to the efficiency of Clostridiales to populate the GF rat in relative proportions to that of the human-donor, members of Clostridia cluster IV only poorly colonize the mouse gut. Thus, the genetic background of the different recipient rodent systems (that is, rats and mice) strongly influences the nature of the populating human gut microbiota, determining each model's biological suitability.
This study shows that not only the stage of liver disease but also HCV infection is associated with a reduced alpha diversity and different microbial community patterns. These differences might be caused by direct interactions between HCV and the microbiota or indirect interactions facilitated by the immune system.
Three regions of the biphenyl dioxygenase (BDO) of Burkholderia sp. strain LB400 have previously been shown to significantly influence the interaction between enzyme and substrates at the active site. For a further discrimination within these regions, we investigated the effects of 23 individual amino acid exchanges. The regiospecificity of substrate dioxygenation was used as a sensitive means to monitor changes in the stericelectronic structure of the active site. Replacements of residues that, according to a model of the BDO three-dimensional structure, directly interact with substrates in most, but not all, cases (Met231, Phe378, and Phe384) very strongly altered this parameter (by factors of >7). On the other hand, a number of amino acids (Ile243, Ile326, Phe332, Pro334, and Trp392) which have no contacts with substrates also strongly changed the site preference of dioxygenation (by factors of between 2.6 and 3.5). This demonstrates that residues which had not been predicted to be influential can play a pivotal role in BDO specificity.Aromatic-ring-hydroxylating dioxygenases (ARHDOs) are key enzymes of the aerobic bacterial metabolism of aromatic compounds (3,4). This family of enzymes is of increasing interest due to the range of substrates that it is able to accept and the variety of reactions that it can catalyze (3, 21). Applications range from the breakdown of environmental pollutants (4, 7) to the stereospecific synthesis of chiral synthons (3,12). For a better understanding of substrate acceptance by ARHDOs, the identification of crucial amino acid (AA) residues at the active site is of major importance. The only three-dimensional structure of an ARHDO that has been solved to date is that of a class III enzyme preferentially accepting naphthalene (5,13,14).
Aromatic-ring-hydroxylating dioxygenases (ARHDOs) are key enzymes in the aerobic bacterial metabolism of aromatic compounds. They are of biotechnological importance as they function as biocatalysts in the stereospecific synthesis of chiral synthons and the degradation of aromatic pollutants. This report describes the development and validation of a system for the rapid isolation and characterization of specific ARHDO activities. The system is based on the identification of ARHDO gene segments that encode the enzymes' major functional determinants, on consensus primers for the direct amplification of such partial genes and on a 'recipient' ARHDO gene cluster for the insertion of the amplified segments. Previously, it has been shown that neither the N-nor the C-terminal portions but only the core region of the large or a-subunit of a class II ARHDO significantly influence substrate and product spectra. On the basis of these observations, consensus primers were designed for the amplification of the gene segment encoding the catalytic core of the large subunit. These primers were tested on 11 bacterial isolates known to metabolize aromatic compounds. In 10 cases, a gene fragment of expected length was amplified. DNA sequencing confirmed similarity to ARHDO a-subunit gene cores. The heterologously well-expressible bphA gene cluster of Burkholderia sp. strain LB400 was modified to facilitate the in-frame insertion of amplified segments. It was used successfully to express the resulting hybrid gene clusters and to form catalytically active chimaeric ARHDOs. The metabolic properties of these enzymes differed significantly from each other and from the parental ARHDO of strain LB400. These results indicate that the system described here can be used to rapidly isolate and functionally characterize ARHDO activities, starting from isolated strains, mixtures of organisms or samples of nucleic acids. Applications of the system range from the recruitment of novel ARHDO activities to an improved characterization of natural ARHDO diversity.
The cotton rat nose is commonly used as a model for Staphylococcus aureus colonization, as it is both physiologically and anatomically comparable to the human nares and can be easily colonized by this organism. However, while the colonization of the human anterior nares has been extensively studied, the microbial community structure of cotton rat noses has not been reported so far. We describe here the microbial community structure of the cotton rat (Sigmodon hispidus) nose through next-generation sequencing of 16S rRNA gene amplicons covering the V1-V2 region and the analysis of nearly full length 16S rRNA genes of the major phylotypes. Roughly half of the microbial community was composed of two undescribed species of the genus Campylobacter, with phylotypes belonging to the genera Catonella, Acholeplasma, Streptobacillus and Capnocytophaga constituting the predominant community members. Thus, the nasal community of the cotton rat is uniquely composed of several novel bacterial species and may not reflect the complex interactions that occur in human anterior nares. Mammalian airway microbiota may, however, be a rich source of hitherto unknown microbes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.