In mammals, the master clock of the suprachiasmatic nuclei (SCN) and subordinate clocks found throughout the body coordinate circadian rhythms of behavior and physiology. We characterize the clock of the adrenal, an important endocrine gland that synchronizes physiological and metabolic rhythms. Clock gene expression was detected in the outer adrenal cortex prefiguring a role of the clock in regulating gluco- and mineral corticoid biogenesis. In Per2/Cry1 double mutant mice, which lack a circadian clock, hypothalamus/pituitary/adrenal axis regulation was defective. Organ culture and tissue transplantation suggest that the adrenal pacemaker gates glucocorticoid production in response to adrenocorticotropin (ACTH). In vivo the adrenal circadian clock can be entrained by light. Transcriptome profiling identified rhythmically expressed genes located at diverse nodes of steroid biogenesis that may mediate gating of the ACTH response by the adrenal clock.
Jet lag encompasses a range of psycho-and physiopathological symptoms that arise from temporal misalignment of the endogenous circadian clock with external time. Repeated jet lag exposure, encountered by business travelers and airline personnel as well as shift workers, has been correlated with immune deficiency, mood disorders, elevated cancer risk, and anatomical anomalies of the forebrain. Here, we have characterized the molecular response of the mouse circadian system in an established experimental paradigm for jet lag whereby mice entrained to a 12-hour light/12-hour dark cycle undergo light phase advancement by 6 hours. Unexpectedly, strong heterogeneity of entrainment kinetics was found not only between different organs, but also within the molecular clockwork of each tissue. Manipulation of the adrenal circadian clock, in particular phase-shifting of adrenal glucocorticoid rhythms, regulated the speed of behavioral reentrainment. Blocking adrenal corticosterone either prolonged or shortened jet lag, depending on the time of administration. This key role of adrenal glucocorticoid phasing for resetting of the circadian system provides what we believe to be a novel mechanism-based approach for possible therapies for jet lag and jet lag-associated diseases.
Highlights d Human gut microbiome exhibits diurnal rhythmicity across populations and individuals d Obese and T2D individuals show disrupted circadian rhythms in the gut microbiome d Arrhytmic bacterial signatures contribute to risk classification and prediction of T2D d These risk signatures show regional differences in applicability across three cohorts
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.