In this study a field‐sampling technique for dissolved hydrogen (H2) in groundwater will be presented which allows the transport of gaseous samples into the laboratory for further analysis. The method consists of transferring the headspace trapped in a gas‐sampling bulb which is continuously purged by groundwater into previously evacuated vials using a gas‐tight syringe. Three transfer steps with preceding evacuation of the vial led to a H2‐recovery of 100 % in laboratory experiments. The method has been applied to determine H2 concentrations in an aquifer contaminated with chlorinated solvents.
Tests concerning the effect of different pumping techniques on H2 concentrations revealed that most reliable values were obtained with a bladder pump, while an electrically driven submersible pump generated considerable amounts of hydrogen due to electrochemical interactions with the sampled water. Concentrations of dissolved hydrogen in field and laboratory samples were about two orders of magnitude higher when sampling was performed with the electrically driven submersible pump compared to sampling with the bladder pump and a peristaltic pump.
Lab experiments with a Plexiglas reservoir to produce H2‐enriched water were used to study the effect of two tubing materials (PVC, polyamide) on H2 losses. PVC tubing turned out to allow transfer of H2‐enriched water over 25 m without significant losses, while PA‐tubing was not suitable for sampling of H2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.