Background: The diagnostic value of tidal breathing (TB) measurements in infants is controversially discussed. The aim of this study was to investigate to what extent the breathing pattern of sleeping infants with chronic lung diseases (CLD) differ from healthy controls with the same postconceptional age and to assess the predictive value of TB parameters.
BackgroundVery low birth weight (VLBW) infants (< 1,500 g) with bronchopulmonary dysplasia (BPD) develop lung damage caused by mechanical ventilation and maturational arrest. We compared functional lung development after discharge from hospital between VLBW infants with and without BPD.MethodsComprehensive lung function assessment was performed at about 50, 70, and 100 weeks of postmenstrual age in 55 sedated VLBW infants (29 with former BPD [O2 supplementation was given at 36 weeks of gestational age] and 26 VLBW infants without BPD [controls]). Mean gestational age (26 vs. 29 weeks), birth weight (815 g vs. 1,125 g), and the proportion of infants requiring mechanical ventilation for ≥7 d (55% vs. 8%), differed significantly between BPD infants and controls.ResultsBoth body weight and length, determined over time, were persistently lower in former BPD infants compared to controls, but no significant between-group differences were noted in respiratory rate, respiratory or airway resistance, functional residual capacity as determined by body plethysmography (FRCpleth), maximal expiratory flow at the FRC (V'max FRC), or blood gas (pO2, pCO2) levels. Tidal volume, minute ventilation, respiratory compliance, and FRC determined by SF6 multiple breath washout (representing the lung volume in actual communication with the airways) were significantly lower in former BPD infants compared to controls. However, these differences became non-significant after normalization to body weight.ConclusionsAlthough somatic growth and the development of some lung functional parameters lag in former BPD infants, the lung function of such infants appears to develop in line with that of non-BPD infants when a body weight correction is applied. Longitudinal lung function testing of preterm infants after discharge from hospital may help to identify former BPD infants at risk of incomplete recovery of respiratory function; such infants are at risk of later respiratory problems.
Lung function after discharge of VLBW infants is differentially affected by both immaturity and NLD requiring MV. With increasing prematurity, intubated and mechanically ventilated infants are at increased risk of developing impaired lung function which can be detected by LFT.
BackgroundSeveral respiratory diseases are associated with specific respiratory sounds. In contrast to auscultation, computerized lung sound analysis is objective and can be performed continuously over an extended period. Moreover, audio recordings can be stored. Computerized lung sounds have rarely been assessed in neonates during the first year of life. This study was designed to determine and validate optimal cut-off values for computerized wheeze detection, based on the assessment by trained clinicians of stored records of lung sounds, in infants aged <1 year.MethodsLung sounds in 120 sleeping infants, of median (interquartile range) postmenstrual age of 51 (44.5–67.5) weeks, were recorded on 144 test occasions by an automatic wheeze detection device (PulmoTrack®). The records were retrospectively evaluated by three trained clinicians blinded to the results. Optimal cut-off values for the automatically determined relative durations of inspiratory and expiratory wheezing were determined by receiver operating curve analysis, and sensitivity and specificity were calculated.ResultsThe optimal cut-off values for the automatically detected durations of inspiratory and expiratory wheezing were 2% and 3%, respectively. These cutoffs had a sensitivity and specificity of 85.7% and 80.7%, respectively, for inspiratory wheezing and 84.6% and 82.5%, respectively, for expiratory wheezing. Inter-observer reliability among the experts was moderate, with a Fleiss’ Kappa (95% confidence interval) of 0.59 (0.57-0.62) for inspiratory and 0.54 (0.52 - 0.57) for expiratory wheezing.ConclusionComputerized wheeze detection is feasible during the first year of life. This method is more objective and can be more readily standardized than subjective auscultation, providing quantitative and noninvasive information about the extent of wheezing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.