The majority of freshwater input from Greenland to the global ocean stems from the Greenland Ice Sheet. Currently, almost a quarter of the freshwater flowing from Greenland is derived from catchments that are disconnected from the Greenland Ice Sheet. Despite their importance to the total freshwater flux and influence on fjord geochemistry, there is relatively little monitoring data available for those catchments and therefore the drivers of regional differences in export are largely unknown. We present a dataset of 12 years of discharge of four catchments less than 15 km apart, that are different in size (between 7 and 32 km2), local glacier coverage (4%–11%) and lake cover (0%–5%). They all drain into Kobbefjord, a well‐studied fjord in West Greenland, near Greenland's capital Nuuk. Between catchments, the magnitude of discharge varies at annual, seasonal and sub‐daily timescales, due to differences in physical catchment properties as well as local climate variability. We find that annual specific discharges vary greatly (between 1.2 and 1.9 m/year on a 12‐year average) due to a longitudinal precipitation gradient from West to East caused by different amount of orographic precipitation shading. The seasonal cycle of discharge (amplitude, timing and minimum flow) differs among the sites mainly due to different exposure to solar radiation as a driver for major snowmelt; the small ice coverage in the catchments plays only a minor role in discharge variability. Dry years generally increase the relative differences in annual specific discharge and no significant temporal trends have been found in the studied catchments. On a sub‐daily timescale, the difference in timing of maximum discharge during fair‐weather days (>80% maximum solar radiation and no precipitation) ranged between 7 and 12 h, which is attributed to differences between the presence and elevation of lakes among the catchments. The response of discharge to major precipitation events is discussed, where a delay of between 5 and 7 h is found for the catchments that do not contain lakes near the gauge.
<p>The majority of the freshwater input from Greenland stems from the Greenland Ice Sheet. Despite its importance in terms of freshwater totals, there is a much higher number of individual catchments disconnected from the ice sheet contributing on average about 26% of the total Greenland freshwater flux. Most of those catchments have local glacier cover, only very few of them are instrumented and little scientific literature exists. We present a dataset of 12 years of discharge of four catchments less than 15 km apart, that are different in size (between 7 and 32 km&#178;), local glacier coverage (4-11%) and lake cover (0-5%). They all drain into Kobbefjord, a well-studied fjord in West Greenland, near Greenland&#8217;s capital Nuuk. We find that annual specific discharge totals vary greatly (between 1.2 and 1.9 m/yr on a 12-year average within 15 km) due to a general climatic gradient and different strengths of orographic shading. The seasonal cycle differs among the sites mainly due to different exposure to solar radiation as a driver for major snowmelt; small ice coverage in the catchments plays only a minor role in discharge variability. Dry years generally increase the magnitude of spatial gradients in specific discharge and no significant temporal trends have been found in the studied catchments. On the sub-daily scale, the presence and elevation of lakes determines the catchment&#8217;s response during sunny days, leading to a difference in the timing of maximum discharge of between 7 and 12 hours depending on the site and the time of the year. The response of discharge to major precipitation events is discussed, where uniform reaction is found for the catchments with no lakes near the gauge and a delay of between 5 and 7 hours in the catchment with low-lying lakes. A comparison with a recently published modelled discharge time series on individual catchment scale shows the model&#8217;s capability of reproducing both snowmelt and large-scale storm events; however, the strong spatial heterogeneity of discharge magnitude and timing as well as the presence and variability of base-flow is not captured. We discuss methods to combine observational data with existing model output in order to improve the potential of their combined usage on the Greenland-scale.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.