To elucidate cellular machinery on a global scale, we performed a multiple comparison of the recently available protein-protein interaction networks of Caenorhabditis elegans, Drosophila melanogaster, and Saccharomyces cerevisiae. This comparison integrated protein interaction and sequence information to reveal 71 network regions that were conserved across all three species and many exclusive to the metazoans. We used this conservation, and found statistically significant support for 4,645 previously undescribed protein functions and 2,609 previously undescribed protein interactions. We tested 60 interaction predictions for yeast by two-hybrid analysis, confirming approximately half of these. Significantly, many of the predicted functions and interactions would not have been identified from sequence similarity alone, demonstrating that network comparisons provide essential biological information beyond what is gleaned from the genome.comparative analysis ͉ multiple alignment ͉ protein network ͉ yeast two-hybrid A major challenge of postgenomic biology is to understand the complex networks of interacting genes, proteins, and small molecules that give rise to biological form and function. Advances in whole-genome approaches are now enabling us to characterize these networks systematically, by using procedures such as the two-hybrid assay (1) and protein coimmunoprecipitation (2) to screen for protein-protein interactions. To date, these technologies have generated large interaction networks for bacteria (3), yeast (4-7), and, recently, fruit fly (8) and nematode worm (9).The large amount of protein interaction data now available presents opportunities and challenges in understanding evolution and function. Such challenges involve assigning functional roles to interactions (10), separating true protein-protein interactions from false positives (11), and, ultimately, organizing large-scale interaction data into models of cellular signaling and regulatory machinery. As is often the case in biology, an approach based on evolutionary cross-species comparisons provides a valuable framework for addressing these challenges. However, although methods for comparing DNA and protein sequences have been a mainstay of bioinformatics over the past 30 years, development of similar tools at other levels of biological information, including protein interactions (12-14), metabolic networks (15-17), or gene expression data (18)(19)(20), is just beginning.Recently, we devised a method called PATHBLAST (13) for comparing the protein interaction networks of two species. Just as BLAST performs rapid pairwise alignment of protein sequences (21), PATHBLAST is based on efficient alignment of two protein networks to identify conserved network regions. Here, we extend this approach to present a computational framework for alignment and comparison of more than two protein networks. We apply this multiple network alignment strategy to compare the recently available protein networks for worm, fly, and yeast, and show that although any single net...
Current work in elucidating relationships between diseases has largely been based on pre-existing knowledge of disease genes. Consequently, these studies are limited in their discovery of new and unknown disease relationships. We present the first quantitative framework to compare and contrast diseases by an integrated analysis of disease-related mRNA expression data and the human protein interaction network. We identified 4,620 functional modules in the human protein network and provided a quantitative metric to record their responses in 54 diseases leading to 138 significant similarities between diseases. Fourteen of the significant disease correlations also shared common drugs, supporting the hypothesis that similar diseases can be treated by the same drugs, allowing us to make predictions for new uses of existing drugs. Finally, we also identified 59 modules that were dysregulated in at least half of the diseases, representing a common disease-state “signature”. These modules were significantly enriched for genes that are known to be drug targets. Interestingly, drugs known to target these genes/proteins are already known to treat significantly more diseases than drugs targeting other genes/proteins, highlighting the importance of these core modules as prime therapeutic opportunities.
Herpesviruses constitute a family of large DNA viruses widely spread in vertebrates and causing a variety of different diseases. They possess dsDNA genomes ranging from 120 to 240 kbp encoding between 70 to 170 open reading frames. We previously reported the protein interaction networks of two herpesviruses, varicella-zoster virus (VZV) and Kaposi's sarcoma-associated herpesvirus (KSHV). In this study, we systematically tested three additional herpesvirus species, herpes simplex virus 1 (HSV-1), murine cytomegalovirus and Epstein-Barr virus, for protein interactions in order to be able to perform a comparative analysis of all three herpesvirus subfamilies. We identified 735 interactions by genome-wide yeast-two-hybrid screens (Y2H), and, together with the interactomes of VZV and KSHV, included a total of 1,007 intraviral protein interactions in the analysis. Whereas a large number of interactions have not been reported previously, we were able to identify a core set of highly conserved protein interactions, like the interaction between HSV-1 UL33 with the nuclear egress proteins UL31/UL34. Interactions were conserved between orthologous proteins despite generally low sequence similarity, suggesting that function may be more conserved than sequence. By combining interactomes of different species we were able to systematically address the low coverage of the Y2H system and to extract biologically relevant interactions which were not evident from single species.
Analysis of expression quantitative trait loci (eQTLs) is an emerging technique in which individuals are genotyped across a panel of genetic markers and, simultaneously, phenotyped using DNA microarrays. Because of the spacing of markers and linkage disequilibrium, each marker may be near many genes making it difficult to finely map which of these genes are the causal factors responsible for the observed changes in the downstream expression. To address this challenge, we present an efficient method for prioritizing candidate genes at a locus. This approach, called 'eQTL electrical diagrams' (eQED), integrates eQTLs with protein interaction networks by modeling the two data sets as a wiring diagram of current sources and resistors. eQED achieved a 79% accuracy in recovering a reference set of regulator-target pairs in yeast, which is significantly higher than the performance of three competing methods. eQED also annotates 368 protein-protein interactions with their directionality of information flow with an accuracy of approximately 75%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.