Temperate bacteriophages play an important role in the pathogenicity of Staphylococcus aureus, for instance, by mediating the horizontal gene transfer of virulence factors. Here we established a classification scheme for staphylococcal prophages of the major Siphoviridae family based on integrase gene polymorphism. Seventy-one published genome sequences of staphylococcal phages were clustered into distinct integrase groups which were related to the chromosomal integration site and to the encoded virulence gene content. Analysis of three marker modules (lysogeny, tail, and lysis) for phage functional units revealed that these phages exhibit different degrees of genome mosaicism. The prevalence of prophages in a representative S. aureus strain collection consisting of 386 isolates of diverse origin was determined. By linking the phage content to dominant S. aureus clonal complexes we could show that the distribution of bacteriophages varied remarkably between lineages, indicating restriction-based barriers. A comparison of colonizing and invasive S. aureus strain populations revealed that hlb-converting phages were significantly more frequent in colonizing strains.Staphylococcus aureus asymptomatically colonizes the anterior nares of humans but also causes a wide spectrum of acute and chronic diseases. Most of the dissimilarity between S. aureus strains is due to the presence of mobile genetic elements such as plasmids, bacteriophages, pathogenicity islands, transposons, and insertion sequences (2,14,19,23). Many virulence factors are encoded on such mobile elements (3,6,17,26,27,35). In particular, bacteriophages play an important role in the pathogenicity of S. aureus either by carrying accessory virulence factors such as Panton-Valentine leukocidin (PVL) (encoded by the luk-PV operon), staphylokinase (encoded by sak), enterotoxin A (encoded by sea), and exfoliative toxin A (encoded by eta) or by interrupting chromosomal virulence genes such as those for -hemolysin (hlb) and lipase (geh) upon insertion. Additionally, phages are the primary vehicle of lateral gene transfer between S. aureus strains, providing the species with the potential for broad genetic variation. We could show that phages increase the genome plasticity of S. aureus during infection, facilitating the adaptation of the pathogen to various host conditions (11,12).Despite the obvious importance of phages for the biology of S. aureus, epidemiological data on the prevalence of phages in this species are limited (28, 33). More than 80 genome sequences of staphylococcal bacteriophages and prophages are available in the public genome databases. Most published S. aureus phages belong to the Siphoviridae family of temperate, tailed bacterial viruses. Traditionally, S. aureus phages were characterized according to their lytic activity, morphology, and serological properties (1, 28). Today, the temperate phages in clinical S. aureus isolates can by identified with a multiplex PCR strategy, which is based on sequence differences between viral genes codin...
Staphylococcus aureus is both a successful human commensal and a major pathogen. The elucidation of the molecular determinants of virulence, in particular assessment of the contributions of the genetic background versus those of mobile genetic elements (MGEs), has proved difficult in this variable species. To address this, we simultaneously determined the genetic backgrounds (spa typing) and the distributions of all 19 known superantigens and the exfoliative toxins A and D (multiplex PCR) as markers for MGEs. Methicillin-sensitive S. aureus strains from Pomerania, 107 nasal and 88 blood culture isolates, were investigated. All superantigenencoding MGEs were linked more or less tightly to the genetic background. Thus, each S. aureus clonal complex was characterized by a typical repertoire of superantigen and exfoliative toxin genes. However, within each S. aureus clonal complex and even within the same spa type, virulence gene profiles varied remarkably. Therefore, virulence genes of nasal and blood culture isolates were separately compared in each clonal complex. The results indicated a role in infection for the MGE harboring the exfoliative toxin D gene. In contrast, there was no association of superantigen genes with bloodstream invasion. In summary, we show here that the simultaneous assessment of virulence gene profiles and the genetic background increases the discriminatory power of genetic investigations into the mechanisms of S. aureus pathogenesis.
Vaccination using the adenoviral vector COVID-19 vaccine ChAdOx1 nCoV-19 (AstraZeneca) has been associated with rare vaccine-induced immune thrombotic thrombocytopenia (VITT). Affected patients test strongly positive in PF4/polyanion enzyme immunoassays (EIAs) and serum-induced platelet activation is maximal in the presence of PF4. We determined the frequency of anti-PF4/polyanion antibodies in healthy vaccinees and assessed whether PF4/polyanion EIA-positive sera exhibit platelet-activating properties after vaccination with ChAdOx1 nCoV-19 (n=138) or BNT162b2 (BioNTech/Pfizer; n=143). In total, 19 of 281 participants tested positive for anti-PF4/polyanion antibodies post-vaccination (All: 6.8% [95%CI, 4.4-10.3]; BNT162b2: 5.6% [95%CI, 2.9-10.7]; ChAdOx1 nCoV-19: 8.0% [95%CI, 4.5-13.7%]). Optical densities were mostly low (between 0.5-1.0 units; reference range, <0.50) and none of the PF4/polyanion EIA-positive samples induced platelet activation in the presence of PF4. We conclude that positive PF4/polyanion EIAs can occur after SARS-CoV-2 vaccination with both mRNA- and adenoviral vector-based vaccines, but the majority of these antibodies likely have minor (if any) clinical relevance. Accordingly, low-titer positive PF4/polyanion EIA results should be interpreted with caution when screening asymptomatic individuals after vaccination against Covid-19. Pathogenic platelet-activating antibodies that cause VITT do not occur commonly following vaccination.
BackgroundThe two major indications for tonsillectomy are recurrent tonsillitis (RT) and peritonsillar abscess (PTA). Unlike PTAs, which are primarily treated surgically, RT is often cured by tonsillectomy only after a series of failed drug therapy attempts. Although the bacteriological background of RT has been studied, the reason for the lack of success of conservative therapeutic approaches is not well understood.MethodsIn a prospective study, tonsil specimens from 130 RT patients and 124 PTA patients were examined for the presence of extra- and intracellular bacteria using antibiotic protection assays. Staphylococcus aureus isolates from RT patients were characterized by pulsed-field gel electrophoresis (PFGE), spa-typing and MSCRAMM-gene-PCR. Their ability for biofilm formation was tested and their cell invasiveness was confirmed by a flow cytometric invasion assay (FACS), fluorescent in situ hybridization (FISH) and immunohistochemistry.Findings S. aureus was the predominant species (57.7%) in RT patients, whereas Streptococcus pyogenes was most prevalent (20.2%) in PTA patients. Three different assays (FACS, FISH, antibiotic protection assay) showed that nearly all RT-associated S. aureus strains were located inside tonsillar cells. Correspondingly, the results of the MSCRAMM-gene-PCRs confirmed that 87% of these S. aureus isolates were invasive strains and not mere colonizers. Based upon PFGE analyses of genomic DNA and on spa-gene typing the vast majority of the S. aureus isolates belonged to different clonal lineages.ConclusionsOur results demonstrate that intracellular residing S. aureus is the most common cause of RT and indicate that S. aureus uses this location to survive the effects of antibiotics and the host immune response. A German translation of the Abstract is provided as supplementary material (Abstract S1).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.