The structure of finite self-assembling systems depends sensitively on the number of constituent building blocks. Recently, it was demonstrated that hard sphere-like colloidal particles show a magic number effect when confined in spherical emulsion droplets. Geometric construction rules permit a few dozen magic numbers that correspond to a discrete series of completely filled concentric icosahedral shells. Here, we investigate the free energy landscape of these colloidal clusters as a function of the number of their constituent building blocks for system sizes up to several thousand particles. We find that minima in the free energy landscape, arising from the presence of filled, concentric shells, are significantly broadened. In contrast to their atomic analogues, colloidal clusters in spherical confinement can flexibly accommodate excess colloids by ordering icosahedrally in the cluster center while changing the structure near the cluster surface. In-between these magic number regions, the building blocks cannot arrange into filled shells. Instead, we observe that defects accumulate in a single wedge and therefore only affect a few tetrahedral grains of the cluster. We predict the existence of this wedge by simulation and confirm its presence in experiment using electron tomography. The introduction of the wedge minimizes the free energy penalty by confining defects to small regions within the cluster. In addition, the remaining ordered tetrahedral grains can relax internal strain by breaking icosahedral symmetry. Our findings demonstrate how multiple defect mechanisms collude to form the complex free energy landscape of hard sphere-like colloidal clusters.
Supraparticles are spherical colloidal crystals prepared by confined self‐assembly processes. A particularly appealing property of these microscale structures is the structural color arising from interference of light with their building blocks. Here, we assemble supraparticles with high structural order that exhibit coloration from uniform, polyhedral metal–organic framework (MOF) particles. We analyse the structural coloration as a function of the size of these anisotropic building blocks and their internal structure. We attribute the angle‐dependent coloration of the MOF supraparticles to the presence of ordered, onion‐like layers at the outermost regions. Surprisingly, even though different shapes of the MOF particles have different propensities to form these onion layers, all supraparticle dispersions show well‐visible macroscopic coloration, indicating that local ordering is sufficient to generate interference effects.
We present a comprehensive structural and analytical characterization of the highly promising supported catalytically active liquid metal solutions (SCALMS) system. This novel catalyst shows excellent performance for alkane dehydrogenation, especially in terms of resistance to coking. SCALMS consists of a porous support containing catalytically active low-melting alloy particles (e.g., Ga-Pd) featuring a complex structure, which are liquid at reaction temperature. High-resolution 3D characterization at various length scales is required to reveal the complex pore morphology and catalytically active sites’ location. Nano X-ray computed tomography (nano-CT) in combination with electron tomography (ET) enables nondestructive and scale-bridging 3D materials research. We developed and applied a correlative approach using nano-CT, 360°-ET and analytical transmission electron microscopy (TEM) to decipher the morphology, distribution and chemical composition of the Ga-Pd droplets of the SCALMS system over several length scales. Utilizing ET-based segmentations of nano-CT reconstructions, we are able to reliably reveal the homogenous porous support network with embedded Ga-Pd droplets featuring a nonhomogenous elemental distribution of Ga and Pd. In contrast, large Ga-Pd droplets with a high Ga/Pd ratio are located on the surface of SCALMS primary particles, whereas the droplet size and the Ga/Pd ratio decreases while advancing into the porous volume. Our studies reveal new findings about the complex structure of SCALMS which are required to understand its superior catalytic performance. Furthermore, advancements in lab-based nano-CT imaging are presented by extending the field of view (FOV) of a single experiment via a multiple region-of-interest (ROI) stitching approach.
Hierarchical pore structures exhibit morphological features on several length scales, which govern important materials properties in catalysis, such as catalytic activity, diffusivity or selectivity. Correlative tomography offers unique opportunities for a comprehensive and scale‐bridging 3D characterization of such complex pore morphologies, which is crucial to further optimize materials design and synthesis routines. This study explores the capabilities of correlative 360° electron tomography (ET) and lab‐based nano X‐ray computed tomography (Nano‐CT) enabling 3D analyses of volumes of up to (60 µm)³ with down to nm resolution, as demonstrated for zeolite particles with embedded macropores. By first applying the two techniques to the same particle the higher resolution and fidelity of ET are used to improve the segmentation of pore space in the Nano‐CT reconstruction. Extended statistical relevance and access to interparticle pore space are obtained from reconstructions of larger particle agglomerates, using the large‐field‐of‐view mode of the Nano‐CT. The presented correlative approach enables real space analyses of important pore characteristics for comparison with complementary pore characterization techniques. Moreover, by investigating samples from different stages of the synthesis, 360°‐ET and Nano‐CT provide unique insights into the formation mechanism of porous materials, as demonstrated for the steam‐assisted crystallization of the macroporous zeolite particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.