It has been known for several years that the triggering of cell proliferation is associated with an increase of the activity of Na,K,Cl cotransport and of transport system A for neutral amino acids. These systems are also enhanced during the volume recovery of hypertonically shrunk cells. We demonstrate here that during the cell cycle of NIH3T3 cells, an increase in cell volume is associated with an enhanced cell content of potassium and amino acids. Bumetanide delays cell cycle progression and hampers volume increase. The nonmetabolizable analog 2-methylamino-isobutyric acid, a specific substrate of system A, can partially substitute natural amino acids accumulated during the cell cycle as intracellular osmolytes. It is therefore proposed that the stimulation of Na,K,Cl cotransport and of system A, observed in proliferating cells, causes an expansion of cell volume through an enhanced intracellular accumulation of both inorganic and organic osmolytes and the concurrent, osmotically obliged uptake of water.
SUMMARYAlthough morphological criteria for apoptosis are in general reliable, no systematic comparison of the techniques employed thus far has yet been performed. In this study, using confocal laser microscopy, we compared the performance of annexin V-FITC and calcein-AM for early detection of apoptosis in living adherent cells. Experiments were carried out on two distinct cell lines, PC 12 and NIH3T3, endowed with different shape and adhesion properties. The apoptotic process was followed for a prolonged period in the same cells of a predetermined field by means of a special flow chamber. Our results show that both probes allowed the detection of apoptotic cells in either cell line. However, some cells that clearly exhibited apoptotic changes on calcein visualization were annexin-negative. In NIH3T3 cells, annexin negativity of apoptotic cells was correlated with the preservation of cell shape and adhesion properties. These findings show that, at least in PC12 and NIH3T3 cells, annexin might be less sensitive than calcein-AM for early apoptosis detection and, for NIH3T3 cells, suggest that phosphatidilserine exposure is in some way linked to changes in cell shape and/or adhesion to culture substrate.
Immunologically based clinical trials performed thus far have failed to cure type 1 diabetes (T1D), in part because these approaches were nonspecific. Because the disease is driven by autoreactive CD4 T cells, which destroy β cells, transplantation of hematopoietic stem and progenitor cells (HSPCs) has been recently offered as a therapy for T1D. Our transcriptomic profiling of HSPCs revealed that these cells are deficient in programmed death ligand 1 (PD-L1), an important immune checkpoint, in the T1D nonobese diabetic (NOD) mouse model. Notably, the immunoregulatory molecule PD-L1 plays a determinant role in controlling/inhibiting activated T cells and thus maintains immune tolerance. Furthermore, our genome-wide and bioinformatic analysis revealed the existence of a network of microRNAs (miRNAs) controlling PD-L1 expression, and silencing one of key altered miRNAs restored PD-L1 expression in HSPCs. We therefore sought to determine whether restoration of this defect would cure T1D as an alternative to immunosuppression. Genetically engineered or pharmacologically modulated HSPCs overexpressing PD-L1 inhibited the autoimmune response in vitro, reverted diabetes in newly hyperglycemic NOD mice in vivo, and homed to the pancreas of hyperglycemic NOD mice. The PD-L1 expression defect was confirmed in human HSPCs in T1D patients as well, and pharmacologically modulated human HSPCs also inhibited the autoimmune response in vitro. Targeting a specific immune checkpoint defect in HSPCs thus may contribute to establishing a cure for T1D.
Objective.Neutrophil extracellular traps (NET) expose modified antigens for autoantibodies in vasculitis. Little is known about levels and removal pathways of NET in systemic lupus erythematosus (SLE), especially in lupus nephritis (LN). We determined circulating levels and defined NET removal in large subsets of patients with incident SLE (iSLE), some of whom had new-onset nephritis.Methods.Serum levels of NET (ELISA), DNase1/DNase1L3 (ELISA), and DNase activity (functional assay) were determined in 216 patients with iSLE [103 had incident LN (iLN)], in 50 patients with other primary glomerulonephritis, and in healthy controls. Ex vivo NET production by neutrophils purified from a random selection of patients was quantified as elastase/DNA release and by immunofluorescence techniques.Results.Serum NET levels were very high in iSLE/iLN compared to all groups of controls and correlated with anti-dsDNA, C3–C4, and proteinuria; iLN had the highest levels. DNase activity was decreased in iLN compared to SLE (20% had one-half DNase activity) despite similar serum levels of DNase1/DNase1L3. In these cases, pretreatment of serum with protein A restored DNase efficiency; 1 patient was homozygous for a c.289_290delAC variant of DNASE1L3. Ex vivo NET production by neutrophils purified from LN, SLE, and normal controls was similar in all cases.Conclusion.Patients with iLN have increased circulating NET and reduced DNase activity, the latter being explained by the presence of inhibitory substances in circulation and/or by rare DNase1L3 mutations. Accumulation of NET derives from a multifactorial mechanism, and is associated and may contribute to disease severity in SLE, in particular to renal lesions. (Clinical trial registration: The Zeus study was registered at ClinicalTrials.gov, study number NCT02403115).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.