SUMMARY The importance of the p53 protein in the cellular response to DNA damage is well known, but its function during steady-state hematopoiesis has not been established. We have defined a critical role of p53 in regulating hematopoietic stem cell quiescence, especially in promoting the enhanced quiescence seen in HSCs that lack the MEF/ELF4 transcription factor. Transcription profiling of HSCs isolated from wild type and p53 null mice identified Gfi-1 and Necdin as p53 target genes and using lentiviral vectors to upregulate or knockdown the expression of these genes, we show their importance in regulating HSC quiescence. Establishing the role of p53 (and its target genes) in controlling the cell cycle entry of HSCs may lead to therapeutic strategies capable of eliminating quiescent cancer (stem) cells.
Primary coenzyme Q 10 (CoQ 10 ) deficiency includes a group of rare autosomal recessive disorders primarily characterized by neurological and muscular symptoms. Rarely, glomerular involvement has been reported. The COQ2 gene encodes the para-hydroxybenzoate-polyprenyl-transferase enzyme of the CoQ 10 synthesis pathway. We identified two patients with early-onset glomerular lesions that harbored mutations in the COQ2 gene. The first patient presented with steroid-resistant nephrotic syndrome at the age of 18 months as a result of collapsing glomerulopathy, with no extrarenal symptoms. The second patient presented at five days of life with oliguria, had severe extracapillary proliferation on renal biopsy, rapidly developed end-stage renal disease, and died at the age of 6 months after a course complicated by progressive epileptic encephalopathy. Ultrastructural examination of renal specimens from these cases, as well as from two previously reported patients, showed an increased number of dysmorphic mitochondria in glomerular cells. Biochemical analyses demonstrated decreased activities of respiratory chain complexes [IIϩIII] and decreased CoQ 10 concentrations in skeletal muscle and renal cortex. In conclusion, we suggest that inherited COQ2 mutations cause a primary glomerular disease with renal lesions that vary in severity and are not necessarily associated with neurological signs. COQ2 nephropathy should be suspected when electron microscopy shows an increased number of abnormal mitochondria in podocytes and other glomerular cells.
The clinical phenotype of oculomotor apraxia type 2 is fairly homogeneous, showing only subtle intrafamilial variability. OMA is an inconstant finding. The identification of new mutations expands the array of SETX variants, and the finding of a missense change outside the helicase domain suggests the existence of at least one more functional region in the N-terminus of senataxin.
To elucidate the mechanisms behind the high sensitivity of myxoid/round cell liposarcoma (MRCL) to trabectedin and the suggested selectivity for specific subtypes, we have developed and characterized three MRCL xenografts, namely ML017, ML015 and ML004 differing for the break point of the fusion gene FUS-CHOP, respectively of type I, II and III. FUS-CHOP binding to the promoters of some target genes such as Pentraxin 3 or Fibronectin 1, assessed by chromatin immunoprecipitation, was strongly reduced in the tumor 24 h after the first or the third weekly dose of trabectedin, indicating that the drug at therapeutic doses causes a detachment of the FUS-CHOP chimera from its target promoters as previously shown in vitro. Moreover, the higher sensitivity of MRCL types I and II appears to be related to a more prolonged block of the transactivating activity of the fusion protein. Doxorubicin did not affect the binding of FUS-CHOP to target promoters. Histologically, the response to trabectedin in ML017 and ML015 was associated with a marked depletion of non-lipogenic tumoral cells and vascular component, as well as lipidic maturation as confirmed by PPARγ2 expression in western Blot. By contrast, in ML004 no major changes either in the cellularity or in the amount of mature were found, and consistently PPARγ2 was null. In conclusion, the data support the view that the selective mechanism of action of trabectedin in MRCL is specific and related to its ability to cause a functional inactivation of the oncogenic chimera with consequent derepression of the adypocytic differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.