According to optimal foraging theory, herbivores can base food choice mainly on the quality or the quantity of food, or both. Among herbivorous primates, folivorous lemurs living in the highly seasonal environment of Madagascar have to cope with the shortage of high-quality food during the dry season, at least in deciduous forests. We studied Propithecus verreauxi verreauxi (Verreaux's sifaka) in Kirindy, western Madagascar, to understand the influence of dry season and food quality and quantity on behavioral patterns and feeding strategy (qualitative vs. quantitative dietary choice) of a folivorous lemur in a deciduous forest. We followed 7 groups (4 groups/period; 3 individuals/group/month) during 4 periods of the year (wet season: February-March; early/middle/late dry season: MayJune; July-September; October-November). We collected samples of plants eaten and examined behavioral and feeding patterns, considering food quality (macronutrients, proteins/fibers ratio, and tannins) and abundance. We found 1) a significant reduction of home range, core area, and daily path length from the wet to the dry season, possibly related to dietary change and 2) a daily period of inactivity in the dry season for energy conservation. Regarding the feeding strategy, Kirindy sifakas showed 1) high variation and selection in choosing food items and 2) a dietary choice based mainly on quality: Kirindy sifakas fed on plant species/families independently from their abundance and tannins represented a feeding deterrent during the dry
BackgroundFrugivorous primates are known to encounter many problems to cope with habitat degradation, due to the fluctuating spatial and temporal distribution of their food resources. Since lemur communities evolved strategies to deal with periods of food scarcity, these primates are expected to be naturally adapted to fluctuating ecological conditions and to tolerate a certain degree of habitat changes. However, behavioral and ecological strategies adopted by frugivorous lemurs to survive in secondary habitats have been little investigated. Here, we compared the behavioral ecology of collared lemurs (Eulemur collaris) in a degraded fragment of littoral forest of south-east Madagascar, Mandena, with that of their conspecifics in a more intact habitat, Sainte Luce.Methodology/Principal FindingsLemur groups in Mandena and in Sainte Luce were censused in 2004/2007 and in 2000, respectively. Data were collected via instantaneous sampling on five lemur groups totaling 1,698 observation hours. The Shannon index was used to determine dietary diversity and nutritional analyses were conducted to assess food quality. All feeding trees were identified and measured, and ranging areas determined via the minimum convex polygon. In the degraded area lemurs were able to modify several aspects of their feeding strategies by decreasing group size and by increasing feeding time, ranging areas, and number of feeding trees. The above strategies were apparently able to counteract a clear reduction in both food quality and size of feeding trees.Conclusions/SignificanceOur findings indicate that collared lemurs in littoral forest fragments modified their behavior to cope with the pressures of fluctuating resource availability. The observed flexibility is likely to be an adaptation to Malagasy rainforests, which are known to undergo periods of fruit scarcity and low productivity. These results should be carefully considered when relocating lemurs or when selecting suitable areas for their conservation.
The ability to operate during the day and at night (i.e., cathemerality) is common among mammals but has rarely been identified in primates. Adaptive hypotheses assume that cathemerality represents a stable adaptation in primates, while nonadaptive hypotheses propose that it is the result of an evolutionary disequilibrium arising from human impacts on natural habitats. Madagascar offers a unique opportunity to study the evolution of activity patterns as there we find a monophyletic primate radiation that shows nocturnal, diurnal, and cathemeral patterns. However, when and why cathemeral activity evolved in lemurs is the subject of intense debate. Thus far, this activity pattern has been regularly observed in only three lemurid genera but the actual number of lemur species exhibiting this activity is as yet unknown. Here we show that the ring-tailed lemur, Lemur catta, a species previously considered to be diurnal, can in fact be cathemeral in the wild. In neighboring but distinct forest areas these lemurs exhibited either mainly diurnal or cathemeral activity. We found that, as in other cathemeral lemurs, activity was entrained by photoperiod and masked by nocturnal luminosity. Our results confirm the relationship between transitional eye anatomy and physiology and 24-h activity, thus supporting the adaptive scenario. Also, on the basis of the most recent strepsirrhine phylogenetic reconstruction, using parsimony criterion, our findings suggest pushing back the emergence of cathemerality to stem lemurids. Flexible activity over 24-h could thus have been one of the key adaptations of the early lemurid radiation possibly driven by Madagascar's island ecology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.