The accumulation of repetitive DNA sequences on the sex-limited W or Y chromosomes is a well-known process that is likely triggered by the suppression of recombination between the sex chromosomes, which leads to major differences in their sizes and genetic content. Here, we report an analysis conducted on the satellitome of Megaleporinus macrocephalus that focuses specifically on the satDNAs that have been shown to have higher abundances in females and are putatively located on the W chromosome in this species. We characterized 164 satellite families in M . macrocephalus , which is, by far, the most satellite-rich species discovered to date. Subsequently, we mapped 30 satellites, 22 of which were located on the W chromosome, and 14 were shown to exist only on the W chromosome. Finally, we report two simple, quick and reliable methods that can be used for sex identification in M . macrocephalus individuals using fin clips or scales, which could be applicable to future studies conducted in the field of aquaculture.
Eukaryotic genomes contain large amounts of repetitive DNA sequences, such as tandemly repeated satellite DNAs (satDNAs). These sequences are highly dynamic and tend to be genus- or species-specific due to their particular evolutionary pathways, although there are few unusual cases of conserved satDNAs over long periods of time. Here, we used multiple approaches to reveal that a satDNA named CharSat01-52 originated in the last common ancestor of Characoidei fish, a superfamily within the Characiformes order, approximately 140–78 million years ago, while its nucleotide composition has remained considerably conserved in several taxa. We show that 14 distantly related species within Characoidei share the presence of this satellite DNA, which is highly amplified and clustered in subtelomeric regions in a single species (Characidium gomesi), while remained organized as small clusters in all the other species. Defying predictions of the molecular drive of satellite evolution, CharSat01-52 shows similar values of intra- and interspecific divergence. Although we did not provide evidence for a specific functional role of CharSat01-52, its transcriptional activity was demonstrated in different species. In addition, we identified short tandem arrays of CharSat01-52 embedded within SMRT long reads of Astyanax paranae (536 bp to 3.1 kb) and A. mexicanus (501 bp to 3.9 kb). Such arrays consisted of head-to-tail repeats and could be found interspersed with other sequences, inverted sequences or neighbored by other satellites. Our results provide a detailed characterization of an old and conserved satDNA, challenging general predictions of satellite DNA evolution.
Microsatellites show great abundance in eukaryotic genomes, although distinct chromosomal distribution patterns might be observed, from small dispersed signals to strong clustered motifs. In Neotropical fishes, the chromosome mapping of distinct microsatellites was employed several times to uncover the origin and evolution of sex and supernumerary chromosomes, whereas a detailed comparative analysis considering different motifs at the chromosomal level is scarce. Here, we report the chromosomal location of several simple sequence repeats (SSRs) in distinct electric knife fishes showing variable diploid chromosome numbers to unveil the structural organization of several microsatellite motifs in distinct Gymnotus species. Our results showed that some SSRs are scattered throughout the genomes, whereas others are particularly clustered displaying intense genomic compartmentalization. Interestingly, the motifs CA, GA, and GAG exhibited a band-like pattern of hybridization, useful for the identification of homologous chromosomes. Finally, the colocalization of SSRs with multigene families is probably related to the association of microsatellites with gene spacers in this case.
The combination of cytogenetic and molecular data with those traditionally obtained in areas like systematics and taxonomy created interesting perspectives for the analysis of natural populations under different aspects. In this context, this study aimed to evaluate the genetic differentiation among populations of the genus Hemiodontichthys Bleeker, 1862, through combined genetic techniques and included the analysis of populations sampled in the Araguaia River, Guamá River, Madeira River and two populations from the Purus River. Hemiodontichthys samples from the two localities in Purus River were also karyotyped in order to address the degree of chromosomal variation between populations. Through GMYC analysis of the COI tree, the patterns of genetic variation among local populations revealed to be higher than the ones found among distinct species from other genera of the subfamily Loricariinae, suggesting the existence of probable four cryptic species in this genus. The possible existence of a species complex in the genus is corroborated by the different cytogenetic patterns between Hemiodontichthys sp. 1 and sp. 2, revealing the necessity of a deep taxonomic review of the group.
Within the genus Prochilodus Agassiz, 1829, five species are known to carry B chromosomes, i.e. chromosomes beyond the usual diploid number that have been traditionally considered as accessory for the genome. Chromosome microdissection and mapping of repetitive DNA sequences are effective tools to assess the DNA content and allow a better understanding about the origin and composition of these elements in an array of species. In this study, a novel characterization of B chromosomes in Prochilodus costatus Valenciennes, 1850 (2n=54) was reported for the first time and their sequence complementarity with the supernumerary chromosomes observed in Prochilodus lineatus (Valenciennes, 1836) and Prochilodus argenteus Agassiz, 1829 was investigated. The hybridization patterns obtained with chromosome painting using the micro B probe of P. costatus and the satDNA SATH1 mapping made it possible to assume homology of sequences between the B chromosomes of these congeneric species. Our results suggest that the origin of B chromosomes in the genus Prochilodus is a phylogenetically old event.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.