Pleuronectiforms are an important group of fish, and one of their species, Solea senegalensis (Kaup 1858), has been extensively studied at different levels, although information about its intestinal microbiota and the effects of different factors on it is very scarce. Modern aquaculture industry demands strategies which help to maintain a microbiologically healthy environment and an environmentally friendly aquaculture. In this context, probiotics seem to offer an attractive alternative. The intake of probiotics could modify the composition of the intestinal microbiota, which is a key component in excluding potential invaders and maintaining health. The aim of this study was to evaluate by 16S rRNA gene analysis using polymerase chain reaction-denaturing gradient gel electrophoresis the effect of administering fresh or lyophilized cells of Pdp11 on the intestinal microbiota of farmed Senegalese sole, using sodium alginate to facilitate the incorporation of bacterial cells to the feed. The results obtained showed that the composition of fish intestinal microbiota was affected when fish received a diet supplemented with sodium alginate and fresh or lyophilized probiotic cells. In all cases, the dominant bacterial groups belonged to γ-Proteobacteria and mainly the Vibrio species. The use of sodium alginate reduced the incidence of populations with <97% 16S rRNA gene sequence identity to uncultured microorganisms in the intestinal microbiota until non-detected limits. On the other hand, the supplementation of the diet with probiotics produced an increase of the predominant species related to Vibrio genus.
The effects on histology and microbial ecology in gilthead seabream (Sparus aurata) intestine caused by dietary probiotic and microalgae were studied. Fish were fed non-supplemented (C, control) or supplemented diets with Tetraselmis chuii, Phaeodactylum tricornutum and Bacillus subtilis single or combined (diets T, P, B, BT and BP) for 4 weeks. Curiously, fish fed the experimental diets showed similar morphological alterations when studied by light and electron microscopy and significant signs of intestinal damage were detected. No effect of microalgae or B. subtilis on the intestinal absorptive area was observed, whereas the number of goblet cells and IELs were significantly lower in fish fed the T, P, B and BT diets and T, BT and BP diets, respectively. Interestingly, only the diets containing B. subtilis resulted in a significant reduction of microvilli height. Alterations such as wide intercellular spaces and large vacuoles in enterocytes were observed in fish fed T, B, BT, BT and P in lesser degrees. These observations demonstrate that fish fed experimental diets presented different signs of oedema and inflammation that could compromise their body homeostasis. Moreover, the experimental diets cause important alterations in the intestinal microbiota by a significant decrease in bacterial diversity, as demonstrated by the fall in specific richness, Shannon and range-weighted richness indices. To our knowledge, this is the first in vivo study regarding the implications of the use of probiotics in combination with immunostimulants on fish intestinal morphology and microbiota. More morphofunctional studies are needed in order to correlate the nutritional and immune aspects of fish gut.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.